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Job title: Research engineer in data integration

Project: MetaboHUB (ANR) 
➢ WP1: Scaling Up: towards large cohort studies
➢ task 4: Data fusion and integration for large-scale investigations

Contract period: Recruitment 14 months (until August + extension 2 months)

2 missions        ConsensusOPLS
Variable selection

Intro Context ConsensusOPLS Application
Variable 
selection

Tests in progress Perspectives
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Where does the need for data integration come from?

To understand and model the complexity of biological systems.

Intro Context ConsensusOPLS Application
Variable 
selection

Tests in progress Perspectives

Source : « Les aveugles et l'éléphant » (1867)

https://www.google.com/imgres?q=Les%20aveugles%20et%20l%27%C3%A9l%C3%A9phant&imgurl=https%3A%2F%2Fsourcesdeyoga.wordpress.com%2Fwp-content%2Fuploads%2F2018%2F05%2F3e.jpg%3Fw%3D640&imgrefurl=https%3A%2F%2Fsourcesdeyoga.wordpress.com%2F2018%2F05%2F11%2Fles-aveugles-et-lelephant-2%2F&docid=4_6VjZJD2W88XM&tbnid=5CReC05UJdvQoM&vet=12ahUKEwjCyNu-vOiJAxU9U6QEHZXtOgIQM3oECHIQAA..i&w=640&h=476&hcb=2&ved=2ahUKEwjCyNu-vOiJAxU9U6QEHZXtOgIQM3oECHIQAA
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Where does the need for data integration come from?

To understand and model the complexity of biological systems.

Multi-omics and multi-techniques 
integration enables us to build a 
global and interconnected vision of 
biological responses, impossible to obtain 
with a single data source.
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Several sources/ Blocks

Comprehensive modelling
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How?

Intro Context ConsensusOPLS Application
Variable 
selection

Tests in progress Perspectives



o Variables >> subjects

o Colinearity

o Heterogeneity
• Numbers of var
• Magnitude
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Which? Multivariate analysis and dimensionality reduction

Intro Context ConsensusOPLS Application
Variable 
selection

Tests in progress Perspectives

Boccard and Rudaz (2013)

https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/epdf/10.1002/cem.2567
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o Variable >> subjects

o Colinearity

o Heterogeneity
• Numbers of var
• Magnitude

ConsensusOPLS
Data matrix

Kernel = transforming data into another space
to improve data representation capability

Metric = Similarity
Types = linear

Consensus kernel = weighted sum of kernels 
by modified RV coefficient 
with the response matrix

kOPLS(-DA) model 
on the 
meta-kernel
+ cross validation
# opt comp

19

How?

Which? Multivariate analysis and dimensionality reduction
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And what do we do with it?

Intro Context ConsensusOPLS Application
Variable 
selection

Tests in progress Perspectives

Key indicators :

✓ R² = the R-squared coefficient
✓ Q² = the Stone-Geisser Q² coefficient
✓ DQ² = the discriminant Q² index
✓ Permutations tests

Boccard et Rutledge (2013)

https://pubmed.ncbi.nlm.nih.gov/23498118/
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ConsensusOPLS: An R package for Multi-Block Data Fusion

Intro Context
Consensus

OPLS
Application

Variable 
selection

Tests in progress Perspectives

https://www.sciencedirect.com/science/article/abs/pii/S0003267013001700?via%3Dihub
https://cran.r-project.org/web/packages/ConsensusOPLS/index.html
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ConsensusOPLS: An R package for Multi-Block Data Fusion

Translation 
Matlab → R

Script-to-script conversion ...with all that this implies 
(format of objects to be adapted, calling/using 
functions, ...)

Reorganization
From script to package

Intro Context
Consensus

OPLS
Application

Variable 
selection

Tests in progress Perspectives

https://www.sciencedirect.com/science/article/abs/pii/S0003267013001700?via%3Dihub
https://cran.r-project.org/web/packages/ConsensusOPLS/index.html
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ConsensusOPLS: An R package for Multi-Block Data Fusion

MATLAB            . R          .

Response
& 
Comp pred

Only 2 class

1

≥ 2 classes

≥ 1

Kernel Linear
(= polynomial order 1)

Polynomial order ≥ 1 
(non linear)
+ Gaussian

Permutations Sequential Parallelized

Outputs Add Variable importance 
in Projection (VIP)

+ synthetics indicators

User friendly Add main results with
print(model)

Generalization & 
optimization

Translation 
Matlab → R

Script-to-script conversion ...with all that this implies 
(format of objects to be adapted, calling/using 
functions, ...)

Reorganization
From script to package

Intro Context
Consensus

OPLS
Application

Variable 
selection

Tests in progress Perspectives

https://www.sciencedirect.com/science/article/abs/pii/S0003267013001700?via%3Dihub
https://cran.r-project.org/web/packages/ConsensusOPLS/index.html
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ConsensusOPLS: An R package for Multi-Block Data Fusion

Generalization & 
optimization

Translation 
Matlab → R

Script-to-script conversion ...with all that this implies 
(format of objects to be adapted, calling/using 
functions, ...)

Reorganization
From script to package

On demo data (14 subjects, 3 blocs (metabolomic = 150, 
microarray = 200 and proteomics = 100 variables): completed
On real data:

→ internal project data set (OCTOPUS): completed
→ ProMetIs metabolomics data: completed
→ Similarity Network Fusion (SNF) data: in progress

Validation

MATLAB            . R          .

Response
& 
Comp pred

Only 2 class

1

≥ 2 classes

≥ 1

Kernel Linear
(= polynomial order 1)

Polynomial order ≥ 1 
(non linear)
+ Gaussian

Permutations Sequential Parallelized

Outputs Add Variable importance 
in Projection (VIP)

+ synthetics indicators

User friendly Add main results with
print(model)

Intro Context
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OPLS
Application
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Tests in progress Perspectives

https://www.sciencedirect.com/science/article/abs/pii/S0003267013001700?via%3Dihub
https://cran.r-project.org/web/packages/ConsensusOPLS/index.html
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ConsensusOPLS: An R package for Multi-Block Data Fusion

Generalization & 
optimization

Translation 
Matlab → R

Script-to-script conversion ...with all that this implies 
(format of objects to be adapted, calling/using 
functions, ...)

Reorganization
From script to package

On demo data (14 subjects, 3 blocs (metabolomic = 150, 
microarray = 200 and proteomics = 100 variables): completed
On real data:

→ internal project data set (OCTOPUS): completed
→ ProMetIs metabolomics data: completed
→ Similarity Network Fusion (SNF) data: in progress

Validation

MATLAB            . R          .

Response
& 
Comp pred

Only 2 class

1

≥ 2 classes

≥ 1

Kernel Linear
(= polynomial order 1)

Polynomial order ≥ 1 
(non linear)
+ Gaussian

Permutations Sequential Parallelized

Outputs Add Variable importance 
in Projection (VIP)

+ synthetics indicators

User friendly Add main results with
print(model)

Valorisation CRAN publication
Poster RFMF (june 2024, Saint-Malo)
Poster JOBIM (june 2024, Toulouse)
Application Note (in writing)

Intro Context
Consensus

OPLS
Application

Variable 
selection

Tests in progress Perspectives

https://www.sciencedirect.com/science/article/abs/pii/S0003267013001700?via%3Dihub
https://cran.r-project.org/web/packages/ConsensusOPLS/index.html
https://cran.r-project.org/web/packages/ConsensusOPLS/index.html
https://hal.science/hal-04623802v1
https://hal.science/hal-04623919
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Intro Context ConsensusOPLS Application Variable 
selection

Tests in progress Perspectives

ConsensusOPLS: An R package for Multi-Block Data Fusion
Which data? 
ProMetIS: proteomics and metabolomics data integration [1]
Post-processed data – mass spectrometry datasets

N = 42 mice
Y = Mutant (Lat or Mx2) 

vs Control (WT)

Biological samples = plasma
Phenotyping = metabolomic

42

c18aquity_pos       c18aquity_neg                      c18hypersil_pos                  hilic_neg
1584                        6047                                       4787                                      3131

[1] Imbert, A., Rompais, M., Selloum, M. et al. ProMetIS, deep phenotyping of mouse models by combined proteomics and metabolomics analysis. Sci Data 8, 311 (2021).

https://www.sciencedirect.com/science/article/abs/pii/S0003267013001700?via%3Dihub
https://cran.r-project.org/web/packages/ConsensusOPLS/index.html
https://github.com/IFB-ElixirFr/ProMetIS/tree/master
https://www.nature.com/articles/s41597-021-01095-3
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How to use?

c18aquity_pos       c18aquity_neg                      c18hypersil_pos                  hilic_neg
1584                        6047                                       4787                                      3131

ConsensusOPLS: An R package for Multi-Block Data Fusion
Which data? 
ProMetIS: proteomics and metabolomics data integration [1]
Post-processed data – mass spectrometry datasets

N = 42 mice
Y = Mutant (Lat or Mx2) 

vs Control (WT)

Biological samples = plasma
Phenotyping = metabolomic

42

[1] Imbert, A., Rompais, M., Selloum, M. et al. ProMetIS, deep phenotyping of mouse models by combined proteomics and metabolomics analysis. Sci Data 8, 311 (2021).

https://www.sciencedirect.com/science/article/abs/pii/S0003267013001700?via%3Dihub
https://cran.r-project.org/web/packages/ConsensusOPLS/index.html
https://github.com/IFB-ElixirFr/ProMetIS/tree/master
https://www.nature.com/articles/s41597-021-01095-3
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Intro Context ConsensusOPLS Application Variable 
selection

Tests in progress Perspectives

ConsensusOPLS: An R package for Multi-Block Data Fusion
Which results? R² = 0.9018  

DQ² = 0.7262  

https://www.sciencedirect.com/science/article/abs/pii/S0003267013001700?via%3Dihub
https://cran.r-project.org/web/packages/ConsensusOPLS/index.html
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Intro Context ConsensusOPLS Application
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Why?
o Variables >> subjects

o Colinearity

o Heterogeneity
• Numbers of var
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Intro Context ConsensusOPLS Application
Variable 
selection

Tests in progress Perspectives

What does variable selection mean in our project?

Use kernel-based variable selection methods 
to eliminate continuous information redundancy and noise
in the data

Why?
o Variables >> subjects

o Colinearity

o Heterogeneity
• Numbers of var
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Intro Context ConsensusOPLS Application
Variable 
selection

Tests in progress Perspectives

What are the decision criteria?
❑Improved performance of the ConsensusOPLS model on key indicators (R² and Q²/ DQ²)
❑Reduction in the number of highly correlated variables

Why?
o Variables >> subjects

o Colinearity

o Heterogeneity
• Numbers of var

What does variable selection mean in our project?

Use kernel-based variable selection methods 
to eliminate continuous information redundancy and noise
in the data
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Intro Context ConsensusOPLS Application
Variable 
selection

Tests in progress Perspectives

Authors and ref. Extended Kernel Tensor Decomposition (KTD)-based method

Dataset

Kernel

Variables 
selection

Results 
optimisation

Extract
significant
variables

Raw data X in list form

Taguchi et al. 2022

Novel feature selection method via kernel
tensor decomposition for improved multi-omics
data analysis

DOI 10.1186/s12920-022-01181-4.

Unsupervised

Code already available in R, which I've reformatted into 
generalizable, automatic functions for better 
reproducibility.

Benefits:
- Captures complex, multi-dimensional and non-linear interactions
- Selects important features

Kernel transformation: the first features have a 
stronger dependency on the others (the most 
representative).

Tensor formation (n-dimensional cube) followed by 
Higher-order singular-value decomposition (HOSVD)

Reduced dataset

H0: the derivative of the singular values of the tensor 
decomposition (u) follows a normal distribution.
Thus p represents the probability that the importance of 
one component of the tensor (i.e. variable) is due to 
chance compared to the other variables (unsupervised).

https://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-022-01181-4
https://github.com/tagtag/MultiR/
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Intro Context ConsensusOPLS Application
Variable 
selection

Tests in progress Perspectives

Authors and ref. Unsupervised Kernel Feature Selection (UKFS)

Brouard et al. 2022

Feature selection for kernel methods in systems biology

DOI 10.1093/nargab/lqac014.

Unsupervised

Code already available in R, requires the use of the 
reticulate package. I use it in generalizable and automatic 
functions.

Benefits:
- Complex data interactions
- Reduces data redundancy
- Suitable for large-scale data
- Preserves kernel structure
- Can be used in a supervised environment with data a priori

Method similar to Lasso (L1 penalty):
Definition of a penalized distortion criterion

Optimize the selected feature subset by reformulating 
(2) as follows:

And using the proximal descending gradient, in particular 
with Forward-backward Splitting (FBS)

Dataset

Kernel

Variables 
selection

Results 
optimisation

Extract
significant
variables

Raw data X in list form

Kernel transformation: the first features have a 
stronger dependency on the others (the most 
representative).

Reduced dataset

https://academic.oup.com/nargab/article/doi/10.1093/nargab/lqac014/6543593
https://cran.rstudio.com/web/packages/mixKernel/index.html
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Variable 
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Authors and ref. Hilbert-Schmidt independance criterion (HSIC) Lasso

Calculation of dependency measures between each 
variable and the response Y using the Hilbert-Schmidt 
independence criterion (HSIC) = kernel based 
independance measure

HSIC Lasso (with L1 penalisation):

Optimization of selected feature subset in HSIC-weighted 
feature space

Code already available in Python, requires the use of the 
reticulate package. I use it in generalizable and automatic 
functions..

Yamada et al. 2019

High-Dimensional Feature Selection by Feature-Wise 
Kernelized Lasso

DOI 10.1162/NECO_a_00537.

Supervised

Benefits:
- Applicable to large datasets (features >> samples)
- Captures non-linear relationships between inputs and outputs
- Takes into account information redundancy between features and outcomes (through HSIC 

calculation).
- Different kernel types for inputs and outputs (e.g.: regression, Gaussian + Gaussian; 

classification, Delta + Gaussian).

Dataset

Kernel

Variables 
selection

Results 
optimisation

Extract
significant
variables

Raw data X in list form and vector Y

Reduced dataset

https://github.com/riken-aip/pyHSICLasso/tree/master
https://doi.org/10.1162/NECO_a_00537
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Taguchi 2022 : 

ProMetIs

Pareto scaled

Comments:
✓ Before selection : 

R² = 0.9497 et DQ² = -0.0546.
✓ After selection : 

Positive values only between 0.04 (DQ² = 0.0645) and 0.6 (DQ² = 0.0985), with a maximum at 0.5 (DQ² = 0.1271).

=> invalid model

Extended Kernel Tensor Decomposition (KTD)-based method

https://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-022-01181-4
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Taguchi 2022 : 

ProMetIs

Pareto scaled

Extended Kernel Tensor Decomposition (KTD)-based method

Comments:
✓ Before selection : 

R² = 0.9497 et DQ² = -0.0546.
✓ After selection : 

Positive values only between 0.04 (DQ² = 0.0645) and 0.6 (DQ² = 0.0985), with a maximum at 0.5 (DQ² = 0.1271).

=> invalid model

https://bmcmedgenomics.biomedcentral.com/articles/10.1186/s12920-022-01181-4
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Intro Context ConsensusOPLS Application
Variable 
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Tests in 
progress
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Unsupervised Kernel Feature Selection (UKFS)
Brouard 2022:

ProMetIs - Pareto scaled

R2       DQ2 
0.1       0.9362963 0.6132494
0.2       0.9319398 0.5934278 
0.6       0.9315062 0.5938941 
No select 0.9112000 0.5253000

https://academic.oup.com/nargab/article/4/1/lqac014/6543593
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Unsupervised Kernel Feature Selection (UKFS)
Brouard 2022:

ProMetIs - Pareto scaled

R2       DQ2 
0.1       0.9362963 0.6132494
0.2       0.9319398 0.5934278 
0.6       0.9315062 0.5938941 
No select 0.9112000 0.5253000

https://academic.oup.com/nargab/article/4/1/lqac014/6543593
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Yamada 2019 :

ProMetIS

## R2 DQ2

## 0.1 0.969762 0.9088585

## 0.2 0.969762 0.9088585

## 0.3 0.969762 0.9088585

## 0.4 0.969762 0.9088585

## 0.5 0.969762 0.9088585

## 0.6 0.969762 0.9088585

## 0.7 0.969762 0.9088585

## 0.8 0.969762 0.9088585

## 0.9 0.969762 0.9088585

## No select 0.911200 0.5253000

Hilbert-Schmidt independance criterion (HSIC) Lasso

https://direct.mit.edu/neco/article-abstract/26/1/185/7936/High-Dimensional-Feature-Selection-by-Feature-Wise?redirectedFrom=fulltext
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Yamada 2019 :

ProMetIS

## R2 DQ2

## 0.1 0.969762 0.9088585

## 0.2 0.969762 0.9088585

## 0.3 0.969762 0.9088585

## 0.4 0.969762 0.9088585

## 0.5 0.969762 0.9088585

## 0.6 0.969762 0.9088585

## 0.7 0.969762 0.9088585

## 0.8 0.969762 0.9088585

## 0.9 0.969762 0.9088585

## No select 0.911200 0.5253000

Hilbert-Schmidt independance criterion (HSIC) Lasso

https://direct.mit.edu/neco/article-abstract/26/1/185/7936/High-Dimensional-Feature-Selection-by-Feature-Wise?redirectedFrom=fulltext
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