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My group
1 Introduction

Complex microbial Ecosystems MUltiScale
modElling: mechanistic and data driven
approaches integration.
Combining artificial intelligence and systems
biology :

• develop innovative modelling methodologies

• improve knowledge about complex biological
systems

• predict their evolution
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The consortium
1 Introduction

Application of the results to macro-scale
properties related to cheese ripening and
consumer preference.



5/55

Biological data
1 Introduction

PhD fellowship in development kernel
approaches for the integration of biological
data from heterogeneous sources

Biological data

• Multi-omics datasets have become more and more
available
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Heterogeneous sources
1 Introduction

PhD fellowship in development kernel
approaches for the integration of biological
data from heterogeneous sources

Heterogeneous sources

• Systems biology often produces datasets of
heterogeneous types (continuous data, counts,
factors, networks . . . ) types



7/55

Kernel approaches
1 Introduction

PhD fellowship in development kernel
approaches for the integration of biological
data from heterogeneous sources

What is a kernel?

A function k defined as k: χ × χ −→ IR s.t.

• k(xi, xj) = k(xj , xi)

• c’Kc ⩾ 0 ∀c ∈ IR

where K is the n × n matrix containing all the data
pairwise similarities K = k(xi, xj).
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Nonlinearity
1 Introduction

Linearity is the biggest advantage of most matrix factorization methods, but it comes at the
cost of a substantial loss of explanatory power. Nonlinear alternatives, such as deep
generative models in the form of variational autoencoders, have proven to be powerful
generalizations of factor analysis and have been successfully applied to a variety of
single-cell genomics technologies, albeit at the cost of reduced interpretability (Argelaguet
et al., 2021).
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Kernel approaches
1 Introduction

PhD fellowship in development kernel
approaches for the integration of
biological data from heterogeneous sources

Why?

Any dataset is viewed through a kernel fuction, that
provides pairwise information between samples
contained in K

• Analyze multiple heterogeneus sources datasets in
uniform way

• Account for nonlinearity in the data
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The nonlinearity with Kernel approaches
1 Introduction

A positive definite kernel is identical to a dot
product in another space, the feature space

Kernel trick

Any dataset is viewed through a kernel function, that
provides pairwise information between samples
contained in K

k(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩

It allows to perform operations implicitly in
the feature space.
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Kernelized algorithms
1 Introduction

Transform linear methods into nonlinear
methods

Kernelization

• Replacing the dot product by a general kernel

The algorithm remains identical as the
computational cost.
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PCA
2 Kernel PCA and interpretability

• Dimensionality Reduction: PCA
transforms data into a lower-dimensional
space while maximazing the explained
variance.

• Orthogonal Components: Identifies
uncorrelated principal components
ranked by the amount of explained
variance.
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PCA vs KPCA
2 Kernel PCA and interpretability

PCA

Given a set of centered observations x1, . . . ,xn with
xi ∈ IRp, PCA diagonalizes the covariance matrix

C =
1

n

n∑
i=1

xix
T
i (1)

with the eigenvalue equation

λv = Cv (2)

with λ ≥ 0 the eigenvalues of C with v the
corresponding eigenvectors, v ∈ IRp

KPCA

Given a set of centered observations in the feature space
i.e.

∑n
j=1 ϕ(xi) = 0, the covariance matrix is

diagonalized in the feature space

C̃ =
1

n

n∑
i=1

ϕ(xi)ϕ(xi)
T

(3)

with the eigenvalue equation

λṽ = C̃ṽ (4)

where ṽ =
∑n

i=1 ãiϕ(xi)
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Interpretability
2 Kernel PCA and interpretability

Kernel methods pose new challenges in
interpretability as it is not easy to
interpret the results in terms of the original
input data.

Preimage problem

• The centroid m might have no preimage in χ.

• The distance can still be computed implicitly with
the kernel trick.
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Interpretability - K
2 Kernel PCA and interpretability
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KPCA-IG
3 KPCA interpretability with KPCA-IG

• Why kernel PCA?

— Reduce dimensionality
— Non-linear method

• Improved interpretability with our method, kernel PCA Interpretable gradient,
KPCA-IG in Briscik, Dillies, and Déjean (2023).
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Partial Derivative
3 KPCA interpretability with KPCA-IG

• Derivative: Measures the rate of
change of a function.

• Partial Derivative: Represents the
rate of change of a multivariate function
with respect to one variable while
keeping others constant.
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Gradient based optimization
3 KPCA interpretability with KPCA-IG

• Gradient Descent: A core algorithm
for training neural networks, using the
gradient of the cost function to optimize
weights iteratively.

• The gradient norm and the direction
of the cost function play a crucial role as
it contributes to the step size for each
iteration, together with the learning
rate.
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Partial derivatives in KPCA-IG
3 KPCA interpretability with KPCA-IG

The partial derivative of the kernel
with respect to the variable of interest,
give us an indication of its the relevance for
the kernel principal components.

The expression to define the effect of the
variable j on the projection on the q
principal components of a generic point x:

wj
1×q =

dφj

dt

∣∣∣
t=0

=
dZT

t

dt

∣∣∣
t=0

(
In − 1

n
1n1

T
n

)
ṽ,

(5)



22/55

KPCA-IG pipeline
3 KPCA interpretability with KPCA-IG

• Compute the partial derivative of
the kernel with respect to each variable
i.e. the direction of maximum variation
associated with each variable for each
individual

• Average value over all the individuals

• Rank of the original features

• Display relevant variables in the
kernel principal component axes as in
Reverter, Vegas, and Oller, 2014
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A visual example
3 KPCA interpretability with KPCA-IG
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Package ‘kpcaIG’
3 KPCA interpretability with KPCA-IG

We have 4 main functions:

• kernelpca: Kernel principal component
analysis

• kpca igrad : KPCA-IG: variables
interpretability in kernel PCA

• plot kpca2D : 2D Kernel principal
analysis plot with variables
representation

• plot kpca3D : 3D Kernel principal
analysis plot with variables
representation
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kernelpca function
3 KPCA interpretability with KPCA-IG
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kpca igrad function
3 KPCA interpretability with KPCA-IG
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plot kpca2D function
3 KPCA interpretability with KPCA-IG



28/55

plot kpca3D function
3 KPCA interpretability with KPCA-IG



29/55

Example of usage
3 KPCA interpretability with KPCA-IG

Linear PCA Kernel PCA with hyperbolic tangent kernel
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Example of usage
3 KPCA interpretability with KPCA-IG

Gene AT4G37483, the least important in the
ranking of KPCA-IG.
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E-MUSE collaboration
4 An application on E-MUSE data
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Context of the study
4 An application on E-MUSE data

• Cheese is an iron scarce
environment

• The cross-feeding between H.
alvei and B. aurantiacum
allows them to access the
otherwise unavailable iron and
nitrogen sources.
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The data
4 An application on E-MUSE data

Dataset Transcriptomics Proteomics Metabolomics

B. aurantiacum 4000 2583 372

Hafnia alvei 4528 2780 372

• Condition: Iron 6 , No-iron: 6

• Phase: Stationary 6 , Exponential: 6

Kernel methods are used with the goal of identifying variables that reveal strategies
employed by ripening bacteria to overcome iron deprivation, ultimately leading to

microbial interactions.



35/55

Cocolture - Proteomics
4 An application on E-MUSE data

Linear PCA Sigmoid KPCA, α = 0.0002 and c = 2
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KPCA-IG vs linear methods
4 An application on E-MUSE data

Common and unique variables - 100 first protein selected by each method
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Variables selected by KPCA-IG
4 An application on E-MUSE data

Protein A0A1D7W2B7 is known for
protecting cells from oxidative stress via
DNA binding and/or ferroxidase activity
(Karas, Westerlaken, and Meyer, 2015). Its
increased expression suggests limited iron
triggers oxidative stress.
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Variables selected by KPCA-IG
4 An application on E-MUSE data

By up-regulating A0A2H1KZ67, B.
aurantiacum likely facilitates the uptake of
iron bound by H. alvei -produced
siderophores, establishing a mutualistic
relationship in iron-limited conditions.
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Integrate multiple omics datasets
5 Supervised multi-omics data integration with kernels

Multiple Kernel Learning (MKL)

• Analyze multiple heterogeneus sources
datasets in uniform way

K∗ =

M∑
m=1

βmKm subject to

{
βm ≥ 0∑M

m=1 βm = 1
(6)

∀m = 1, . . . ,M

Mariette, J.
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Supervised MKL with Kernels
5 Supervised multi-omics data integration with kernels

• Why Multiple Kernel learning?

— Single omics analysis may not provide enough information to gain a deep understanding
of a biological system (Mariette and Villa-Vialaneix, 2017)
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Integration of multi-omics datasets
5 Supervised multi-omics data integration with kernels

MOGONET Wang et al. (2021)
MOADLN Gong et al. (2023)
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SVM with early integration
5 Supervised multi-omics data integration with kernels

Not fair!
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SVM with mixed integration
5 Supervised multi-omics data integration with kernels
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Cross-Modal Deep MKL
5 Supervised multi-omics data integration with kernels
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Results - BRCA
5 Supervised multi-omics data integration with kernels

Similar results for ROSMAP, LGG and KIPAN, where MKL-based methods, achieved
competitive results outperforming claimed state-of-the-art methods.
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Biomarker Discovery

A hybrid approach leveraging Deep-MKL and KPCA-IG for identifying key biomarkers.

Step 1: Selecting Relevant kernel components

• Use Integrated Gradients Sundararajan, Taly, and Yan (2017) to rank kernel
principal components (KPCs) by their contribution to model predictions.

• Identify the most important KPCs.

Step 2: Rank original features

• Apply KPCA-IG to obtain a data-driven feature importance based on the selected
kernel PCs.

• Use the same kernel parameters (σ) optimized in the Deep-MKL model to ensure
consistency.

Identify the most important biomarkers across omics layers.
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Results and Insights

• BRCA Dataset:
— mRNA Biomarkers: GABRP, SOX10, TFF1, AGR3, SERPINB5, etc.
— DNA Methylation Biomarkers: IGFBP4, RARA, NHLRC4, etc.
— miRNA Biomarkers: hsa-mir-224, hsa-mir-452, hsa-mir-675, etc.

• ROSMAP Dataset:
— mRNA Biomarkers: PREX1, CSRP1, MID1IP1, etc.
— DNA Methylation Biomarkers: R3HDML, MYOD1, ALDH3B1, etc.
— miRNA Biomarkers: hsa-miR-423-3p, hsa-miR-374b, hsa-miR-885-5p, etc.

Functional Insights:

• BRCA biomarkers linked to cancer progression and poor prognosis.
• ROSMAP biomarkers associated with Alzheimer’s disease pathways.

The hybrid Deep-MKL and KPCA-IG approach was found to be effective in predicting
the disease of interest, potentially showing disease mechanisms and helping in the
development of personalized treatment protocols.
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Take-Home message
6 Conclusions

Multi-omics data are complex, heterogeneous, and
high-dimensional, requiring advanced techniques for
integration and analysis.

• Kernel Methods:

— Provide a flexible, non-linear framework for data
integration.

• KPCA-IG

— Provides a data-driven feature selection
method and KPCA interpretable solution.

• Multiple Kernel Learning

— MKL showed that despite being under-utilized
in multi-omics data analysis, it provides a fast
and reliable solution that can compete with and
outperform more complex architectures.

— Deep-MKL + KPCA-IG successfully
identified relevant biomarkers.
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Q & A

Thank you!

E-MUSE project has received funding from the European Union’s Horizon 2020 research
and innovation under the Marie Sk lodowska-Curie grant agreement N° 956126

https://www.itn-emuse.com/, https://cordis.europa.eu/project/id/956126

https://www.itn-emuse.com/
https://cordis.europa.eu/project/id/956126
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