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About me
A brief overview of the past years
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Skin research
Pierre-Fabre Laboratories

• Prevent, soothe and treat skin disorders (e.g. acne, alopecia, eczema / atopic dermatitis,seborrheic dermatitis, rosacea, skin cancer...) or changes (e.g. skin aging...).
• Develop products taking care of healthy as well as damaged skin, providing homeostasis.

Skin - A short definition
Skin = “[. . . ] the largest organ in the body [covering] the body’s entire external surface”. Hani et al., 2022, NCBI website.
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Multi-omics integration

What is it?
Why (and how) should we
combine heterogeneous omics
datasets?



Why combining them?

To get an overview of possible interactions between different molecular levels
happening on a given biological system of interest, e.g. the cutaneous ecosystem.

The (famous) elephant parable.[ele, ]
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Linear multi-table approaches

Constraints: samples as basis, intermediate integration [Picard et al., 2021]

Generally, they produce...

• signatures;
• individual scores associated to signatures.

They differ on...

1. optimisation problem;
2. sparsity (or not);
3. way to combine signatures;
4. signature constraint(s).
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MOFA [Argelaguet et al., 2018]
1

Source: nlpca website

1. MFA (weighted PCA) variant withBayesian framework
2. no (direct) sparsity
3. common scores
⇒ unsupervised

1MOFA2 R package - MOFA website
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http://www.nlpca.org/pca_principal_component_analysis.html
https://biofam.github.io/MOFA2/


DIABLO [Singh et al., 2019]
2

Source: Gundersen G. (2018)

1. sGCCA variant
[Tenenhaus et al., 2014]

2. sparsity
3. scores for each omic
⇒ mixed4

→ groups described in relation toeach other
2mixOmics R package - mixOmics website

4performing both supervised and unsupervised tasks
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https://gregorygundersen.com/blog/2018/07/17/cca/
http://mixomics.org/mixdiablo/


jNMF [Zhang et al., 2012]

NMF on a picture [Lee and Seung, 1999]

joint NMF on omics [Zhang et al., 2012]

1. NMF variant
2. no sparsity
3. common scores
4. positive signatures
⇒ unsupervised
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The choice will depend on the question!

Source: [Subramanian et al., 2020] Source: [Athieniti and Spyrou, 2022]
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Question(s) of interest

Biomarker research
Which are the describing elements of a dermatological state measured through

multiple OMICS and clinical data?
Association question

What are the molecular elements coming from 2 different OMIC types associated in all
(or specific) samples?
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Question(s) of interest
An example

What group(s) of proteins and genes are associated together and explain the presence (or absence) of
Atopic Dermatitis (AD) on samples?

Existingmixed approaches? Only a few.
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NMFProfiler

A mixed integrative NMF extract-
ing typical profiles of groups of
interest.



Non-negative Matrix Factorization (NMF), [Lee and Seung, 1999]
A short introduction

Aim? Extract typical profiles of individuals with latent components (here, molecular signatures).
How? Decompose the data matrix X ∈ Rn×p

+ into two non-negativematrices W ∈ Rn×K
+ and H ∈ RK×p

+ :
X 'WH

• W: “contribution” matrix of scores for n samples wrt each signature k ∈ {1, · · · ,K};
• H: “signature” (or “dictionary”) matrix for K signatures.
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NMFProfiler, a mixed integrative NMF
The math behind
Framework? X(j) ∈ Rn×pj

+ the J OMICS datasets and Y ∈ {0, 1}n×U the one-hot encoded groups.

1
2

J∑
j=1

∥∥∥X(j) −WH(j)
∥∥∥2

F︸ ︷︷ ︸
goodness-of-fit

+λ

J∑
j=1

∥∥∥H(j)
∥∥∥

1︸ ︷︷ ︸
sparsity

+
µ

2
‖W‖2

F︸ ︷︷ ︸
regularization

+
γ

2

J∑
j=1

∥∥∥Y− X(j)H(j)>Diag
(
β(j)
)∥∥∥2

F︸ ︷︷ ︸
U independent linear regressions

(1)
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NMFProfiler
A new optimization algorithm Appendix 3

• All terms alternatively updated thanks to an iterative approach (gradient
descent).

• Generally, updates under the shape ofMultiplicative Updates (MU).
• But H(j) obtained not directly sparse.
Thus, use the Proximal approach to update these matrices.
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Results from simulations

Test NMFProfiler on simulated
datasets. Comparewith state-of-
the-art methods.



Simulated data see data

Data generation process (based on [Yang and Michailidis, 2016])

- 2 OMICS datasets with n = 50, p1 = 2500 and
p2 = 400;

- K = 2 signatures (since 2 groups);
→ Groups perfectly balanced;
→ Group and batch patterns of the same size andno noisy features;
→ More noise in group patterns.

• Aim? Identify precisely biomarkers of a givengroup (e.g. healthy / DA) only.

• Compared NMProfilerc to state-of-the-art
methods in multi-omics analysis
([Argelaguet et al., 2018, Singh et al., 2019]).
c : both MU and proximal solvers

Biopuces - 16-01-25 - p. 40



Simulated data see data

Data generation process (based on [Yang and Michailidis, 2016])

- 2 OMICS datasets with n = 50, p1 = 2500 and
p2 = 400;

- K = 2 signatures (since 2 groups);

→ Groups perfectly balanced;
→ Group and batch patterns of the same size andno noisy features;
→ More noise in group patterns.

• Aim? Identify precisely biomarkers of a givengroup (e.g. healthy / DA) only.

• Compared NMProfilerc to state-of-the-art
methods in multi-omics analysis
([Argelaguet et al., 2018, Singh et al., 2019]).
c : both MU and proximal solvers

Biopuces - 16-01-25 - p. 41



Simulated data see data

Data generation process (based on [Yang and Michailidis, 2016])

- 2 OMICS datasets with n = 50, p1 = 2500 and
p2 = 400;

- K = 2 signatures (since 2 groups);
→ Groups perfectly balanced;
→ Group and batch patterns of the same size andno noisy features;
→ More noise in group patterns.

• Aim? Identify precisely biomarkers of a givengroup (e.g. healthy / DA) only.

• Compared NMProfilerc to state-of-the-art
methods in multi-omics analysis
([Argelaguet et al., 2018, Singh et al., 2019]).
c : both MU and proximal solvers

Biopuces - 16-01-25 - p. 42



Simulated data see data

Data generation process (based on [Yang and Michailidis, 2016])

- 2 OMICS datasets with n = 50, p1 = 2500 and
p2 = 400;

- K = 2 signatures (since 2 groups);
→ Groups perfectly balanced;
→ Group and batch patterns of the same size andno noisy features;
→ More noise in group patterns.

• Aim? Identify precisely biomarkers of a givengroup (e.g. healthy / DA) only.

• Compared NMProfilerc to state-of-the-art
methods in multi-omics analysis
([Argelaguet et al., 2018, Singh et al., 2019]).
c : both MU and proximal solvers

Biopuces - 16-01-25 - p. 43



Simulated data see data

Data generation process (based on [Yang and Michailidis, 2016])

- 2 OMICS datasets with n = 50, p1 = 2500 and
p2 = 400;

- K = 2 signatures (since 2 groups);
→ Groups perfectly balanced;
→ Group and batch patterns of the same size andno noisy features;
→ More noise in group patterns.

• Aim? Identify precisely biomarkers of a givengroup (e.g. healthy / DA) only.

• Compared NMProfilerc to state-of-the-art
methods in multi-omics analysis
([Argelaguet et al., 2018, Singh et al., 2019]).
c : both MU and proximal solvers

Biopuces - 16-01-25 - p. 44



Results
Median ROCs on 50 simulations for each dataset j and group k
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Results
General conclusions on simulated data Appendix 5

• Best methods: NMFProfiler (both solvers) and DIABLO.

• NMFProfiler-prox succeeds in selecting features depending on the phenotype,
classifies well samples and runs fast.

• Robust to group desequilibrium and batch effect.3
• NMFProfiler-MUmore robust to noise than NMFProfiler-prox.4

3Up to a certain threshold.4Unadapted hyperparameters. See Cohen and Leplat (2024).
Biopuces - 16-01-25 - p. 46
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Atopic Dermatitis study

Profile 2 groups based on 2 omic
datasets



Profile Atopic Dermatitis
Question and datasets

What group(s) of proteins and genes are associated together and explain the presence (or absence) of
Atopic Dermatitis (AD) on samples?

→ Analyzed with NMFProfiler-prox and DIABLO
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Profile Atopic Dermatitis
Question and datasets

What group(s) of proteins and genes are associated together and explain the presence (or absence) of
Atopic Dermatitis (AD) on samples?

• common inflammatory skin disease
• n = 12 volunteers
• suction blister in non-lesional area
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Profile Atopic Dermatitis
Question and datasets

What group(s) of proteins and genes are associated together and explain the presence (or absence) of
Atopic Dermatitis (AD) on samples?

• LC/MS
→ p1 = 1303

• log 2-transformed
• quantile normalization
• low count / variance proteins
filtered out

• batch correction with ComBat
[Johnson et al., 2007]
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Profile Atopic Dermatitis
Question and datasets

What group(s) of proteins and genes are associated together and explain the presence (or absence) of
Atopic Dermatitis (AD) on samples?

• Human Gene Array Plates
(Affymetrix)
→ p2 = 53617

• RMA [Irizarry et al., 2003]

• probes expressed below
background filtered out

• batch correction (as before)
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Profile Atopic Dermatitis
Heatmap of contribution matrix W
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Profile Atopic Dermatitis
Heatmap of contribution matrix W
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Profile Atopic Dermatitis
Heatmaps of dictionary matrices H(j)
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Profile Atopic Dermatitis
Features characterizing each profile
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Profile Atopic Dermatitis
Pairwise correlation matrix
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Profile Atopic Dermatitis
Conclusions

• Sparse signatures containing known biomarkers of (non-lesional) AD skin;
• Features selected for describing a given group are associated together;
• Possibly new biomarkers uncovered;

• Similar results with DIABLO;
• NMFProfiler’s signatures less redundant.
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Colon adenocarcinoma
study (TCGA)

Profile 3 groups based on 3 omic
datasets



TCGA: Colon adenocarcinoma study (COAD)
Question and datasets (downloaded here)

What group(s) of genes, methylated DNA sites and miRNA are associated together and explain the
different stages of regional lymph nodes involvement?
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TCGA: Colon adenocarcinoma study (COAD)
Question and datasets (downloaded here)

What group(s) of genes, methylated DNA sites and miRNA are associated together and explain the
different stages of regional lymph nodes involvement?

→ Analyzed with NMFProfiler-MU (pairs’ subsample, full categorical variable) and DIABLO (only pairs’
subsample).
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Profile lymph nodes extent stages
N0 versus N1

Projection of samples onto signatures obtained for N0vsN1 for each omic and method. For DIABLO, only the x-axis (first signature) is relevant (split based on sign).
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Profile lymph nodes extent stages
N0 versus N2

Projections of samples onto signatures of N0vsN2 for each omic and method. For DIABLO, only the x-axis (first signature) is relevant (split based on sign).
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Profile lymph nodes extent stages
N0, N1 and N2

Projections of samples onto signatures of N obtained by NMFProfiler for each omic. The first signature corresponds to group N0, the second to group N1 and the third to
group N2.
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Profile lymph nodes extent stages
Conclusions Appendix 6

NMFProfiler:
• shows a better ability than DIABLO to separate the two groups;
• produces a specific profile for each group, easing the interpretation;

• finds some signatures to be predictive of survival (hard to find on COAD
[Rappoport and Shamir, 2018, Cantini et al., 2021]).
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Conclusion



Conclusion and perspectives

- Developped NMFProfiler for multi-omics group profile extraction.
- Flexible, interpretable and competitive.
- Able to draw a specific profile by group from J ≥ 2 omics and for U ≥ 2 distinct groups.
- Used on real data to uncover biomarkers of AD.

→ nmfprofiler implemented in a Python package: check out GitLab or PyPI.

• Keep on investigating results on real data (e.g. multi-omics enrichment analysis).
• Calibrate hyperparameters5.

5like γ, λ
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- Used on real data to uncover biomarkers of AD.

→ nmfprofiler implemented in a Python package: check out GitLab or PyPI.

• Keep on investigating results on real data (e.g. multi-omics enrichment analysis).
• Calibrate hyperparameters5.
5like γ, λ
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Appendix 1
Integrative NMF, [Zhang et al., 2012]
Framework? X(j) ∈ Rn×pj

+ the J OMICS datasets.
jNMF:

min
W,H(1),...,H(J)≥0

J∑
j=1

‖X(j) −WH(j)‖2
F

• W ∈ Rn×K
+ the common “contribution” matrix;

• H(j) ∈ RK×pj
+ the “dictionary” matrices;

• K the number of signatures to choose.

• No supervision.
• No sparsity in signatures.
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Appendix 2
Supervised NMF, [Leuschner et al., 2019]
Framework? X ∈ Rn×p

+ the OMIC dataset and y ∈ {0, 1}n the groups of interest.
FR-lda:

min
W,H,β≥0

1
2
‖X−WH‖2

F︸ ︷︷ ︸
goodness-of-fit

+λ‖H‖1︸ ︷︷ ︸
sparsity

+
µ

2
‖W‖2

F +
ν

2
‖H‖2

F︸ ︷︷ ︸
regularization

+
γ

2
‖y− XHTβ‖2

2︸ ︷︷ ︸
LDA

• W ∈ Rn×K
+ the “contribution” matrix;

• H ∈ RK×p
+ the “dictionary” matrix;

• λ, µ, ν, γ > 0 the regularization parameters (given);
• β ∈ RK

+ the regression coefficients vector;
• K the number of signatures to choose.
• For one OMIC only.
• Sparsity obtained by thresholding (no true sparsity).
• Use of regularization terms?
• Efficiency of supervised term?

Biopuces - 16-01-25 - p. 80



Appendix 3 back to slides

Algorithm Overview of the Proximal algorithm used to minimize Equation (1)
1: Initialize matrices W(0) , H(j,0) , vectors β(j,0) with strictly positive values.2: for all t = 1, . . . , T do3: MU update: W(t+1) ← W(t) � A(W(t)) of interest4: Prox update: ∀ j = 1, . . . , J,

H(j,t+1) ← proxg̃j

(
H̃(j)

)
, H̃(j)

= H(j,t) −
1

η
∇fj(H(j,t)

)

5: OLS solution: ∀ j = 1, . . . , J, ∀ k = 1, . . . , U,

β
(j,t+1)
k ←

H(j,t+1)
k. X(j)>Y.k

H(j,t+1)
k. X(j)>X(j)H(j,t+1)>

k.

6: end for7:8: return W := W(T+1) , H(j) := H(j,T+1) and β(j) := β(j,T+1) (j = 1, . . . , J)
where A(W(t)) is a matrix with positive entries, prox is the proximal operator and fj and g̃j are two functions.
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Appendix 4
Illustration of a simulated dataset back to slides
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Appendix 5
Median ROCs on 50 simulations given both supervised terms and solvers back to slides
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Appendix 5
Distribution of computational time across 50 simulations (focus on NMFProfiler) back to slides
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Appendix 5
Sample classification (accuracy measured on logistic reg.) back to slides
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Appendix 5
Sample classification (McFadden index measured on logistic reg.) back to slides
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Appendix 6
Are signature predictive of survival? back to slides

Cox proportional hazard model, based on [Rappoport and Shamir, 2018, Cantini et al., 2021] works:
1. ∀j ∈ {1, 2, 3}, compute X(j)Ĥ(j)> ∈ Rn×K , the projection of samples onto signatures;
2. For each group, extract the corresponding rows and signature in X(j)Ĥ(j)>,∀j ∈ {1, 2, 3};
3. Concatenate the J = 3 submatrices of group u⇒ they become the 3 predictors in the CPHmodel (coxph()in R package survival);
4. Extract the 4 p-values: 3 omic-specific p-values6 and a global model p-value.7

6Wald test7Likelihood ratio test of the full model against the empty model
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Appendix 6
Are signature predictive of survival? back to slides

− log10 (p-values) obtained with Cox proportional hazard models for the association of survival to both N0vsN1 and N0vsN2
signatures obtained by DIABLO and NMFProfiler. The full (versus null) model p-value is displayed in red and the three p-values
corresponding to an omic-specific signature are displayed in black. The dashed horizontal line corresponds to a p-value of
0.05.
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