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Omics and precision medicine

3Source: BD “Les Trois Mousquetaires”, inspired from Alexandre Dumas’ work

Traditional medicine

Treatment A

Treatment B

Clinician Diagnosis

Prognosis

Un pour tous !
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Omics and precision medicine
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Precision medicineTraditional medicine

Source: BD “Les Trois Mousquetaires”, inspired from Alexandre Dumas’ work

Treatment A

Treatment B

Clinician Diagnosis

Prognosis

Un pour tous ! Tous pour un !

Personalized 
treatment

Clinician

Early diagnosis

Prognosis

+Omics

http://progress_bar_id
http://progress_bar_id


5

Transcriptomics Why? To understand gene 
expression dynamics

What for? 
❏ Disease biomarkers 

identification
❏ Capturing drugs 

effects on gene 
expression

Dynamic information at a 
given time in a given cell

Source: BioRender
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Transcriptomics

Dynamic information at a 
given time in a given cell

Source: BioRender

Context: transcriptomic data became more available 
(sequencing advances, etc.)

High-dimensional 
tabular data

(>20,000 genes)

Gene expression features
Patient 1
Patient 2
Patient 3

Patient n

…

Why? To understand gene 
expression dynamics

What for? 
❏ Disease biomarkers 

identification
❏ Capturing drugs 

effects on gene 
expression
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Precision medicine

Machine 
Learning

(e.g. random 
forests, SVMs)

Kourou et al. Machine learning applications in cancer prognosis and prediction (Computational and structural biotechnology journal 2015)

Machine Learning for cancer prediction
Gene expression data as input for data-driven models:

Cancer phenotypes 
prediction tasks

❏ Diagnosis
❏ Prognosis
❏ Drug response
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Reduced gene features
Patient 1
Patient 2
Patient 3

Patient n

…

+ Careful feature selection
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Precision medicine

Machine 
Learning

(e.g. random 
forests, SVMs)

Kourou et al. Machine learning applications in cancer prognosis and prediction (Computational and structural biotechnology journal 2015)

Machine Learning for cancer prediction
Gene expression data as input for data-driven models:

Cancer phenotypes 
prediction tasks

❏ Diagnosis
❏ Prognosis
❏ Drug response
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Deep 
Learning

● Deep abstract 
representation learning

● Non linear modeling

● Complex feature relationships

Gene expression features
Patient 1
Patient 2
Patient 3

Patient n

…
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Precision medicine

Small n, large p

Cancer phenotypes 
prediction tasks

❏ Diagnosis
❏ Prognosis
❏ Drug response
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Deep 
Learning

Small dataset

overfitting

Halevy et al. The unreasonable effectiveness of data (IEEE Intell Syst. 2009)

➔ Scarcity: cost, lack of integration, 
few patients (~100-1,000)

➔ High dimensionality
(+20,000 features)

➔ Few studies on bulk RNA: AEs for 
dimensionality reduction, multilayer 
perceptrons (MLPs)
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Precision medicine

Data augmentation

Cancer phenotypes 
prediction tasks

❏ Diagnosis
❏ Prognosis
❏ Drug response
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Deep 
Learning

Small dataset

Halevy et al. The unreasonable effectiveness of data (IEEE Intell Syst. 2009)
Hanczar et al. Phenotypes Prediction from Gene Expression Data with Deep Multilayer Perceptron and Unsupervised Pre-training  (International Journal of Bioscience 2018)
Bourgeais et al. Deep GONet: self-explainable deep neural network based on Gene Ontology for phenotype prediction from gene expression data (BMC Bioinformatics  2021)

+
Synthetic data

Large augmented dataset

Regularization

Data 
augmentation
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Transformation-based

Y. Lecun et al. Gradient-based learning applied to document recognition (IEEE 1998)
Elgendy, Deep Learning for Vision Systems (2020)

Data augmentation

Computer vision:

11

Additional samples

What label-invariant transformations 
for gene expression data?

Transformations

Real sampleLabel

y

y
y
y
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Model-based

Welling et al. Auto-encoding variational bayes (ICLR 2014)
Karras et al. Analyzing and improving the image quality of stylegan  (IEEE/CVF  2020)
Rames et al. Hierarchical text-conditional image generation with clip latents (2022)

Data augmentation

Deep generative models (DGMs):

12

Additional samples

Generative model

Real sample

❏ Variational autoencoders (VAEs)

❏ Generative Adversarial Networks (GANs) 

❏ Diffusion models (DMs)

❏ Large Language Models 
(LLMs)

Train

Source: 
thispersondoesnotexist.com

Source: DALL-E 2

Label

y

Can we adapt DGMs in this 
small n, large p scenario?
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Objectives of the thesis
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Challenges for DGMs:

- High dimensional data distribution (~20,000 features)

- Tabular features (less explored in DL)

- Data evaluation

Objectives:

❏ Adapt and extend DGMs for transcriptomics

❏ Proper data quality evaluation

❏ Data augmentation methodology 

Can we leverage data augmentation with DGMs to enhance deep 
learning classification performance?

Scope: precision medicine with ML and transcriptomics

Similarity Variety
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http://progress_bar_id


Contributions of the thesis
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AttGAN:
A. Lacan, M. Sebag and B. Hanczar. "GAN-based data augmentation for 
transcriptomics : survey and comparative assessment". In: ISMB, June 2023.

GANs for microarray data:
A. Alsamadi, A. Lacan, B. Hanczar and M. Sebag. “Identifying GANs Blind 
Spots in Transcriptomic Data Generation". In: JDSE, September 2024.

Diffusion for transcriptomics (preprint):
A. Lacan, R. André, M. Sebag and B. Hanczar. "In Silico Generation of 
Gene Expression profiles using Diffusion Models". In: bioRxiv, 2024.

GMDA:
A. Lacan, B. Hanczar and M. Sebag.
“Frugal Generative Modeling for Tabular Data". In: ECML-PKDD, September 2024.
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Contributions of the thesis

15

AttGAN:
A. Lacan, M. Sebag and B. Hanczar. "GAN-based data augmentation for 
transcriptomics : survey and comparative assessment". In: ISMB, June 2023.

GANs for microarray data:
A. Alsamadi, A. Lacan, B. Hanczar and M. Sebag. “Identifying GANs Blind 
Spots in Transcriptomic Data Generation". In: JDSE, September 2024.

Diffusion for transcriptomics (preprint):
A. Lacan, R. André, M. Sebag and B. Hanczar. "In Silico Generation of 
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State-of-the-art deep generative models

Welling et al. Auto-encoding variational bayes (ICLR 2014)

Variational autoencorders (VAEs)

Diverse outputs

Meaningful regularized 
latent space

Lack of detailed outputs

Simple prior

reconstruction regularization

Tabular: TVAE (Xu et al. NeurIPS 2019), 
GOGGLE (Liu et al. ICLR 2023)

Transcriptomics: Single-cell applications 
(Lopez et al. Nat Methods 2018)

http://progress_bar_id
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Goodfellow et al. Generative adversarial nets. (NeurIPS 2014)
Gulrajani et al. Improved training of Wasserstein GANs (NeurIPS 2017)

Variational autoencorders (VAEs) Generative adversarial networks (GANs)

Wasserstein GAN with 
Gradient Penalty 

(WGAN-GP)

High-quality and realistic 
outputs

Mode collapse

Convergence issues

Tabular: CTGAN (Xu et al. NeurIPS 2019), 
PATE-GAN (Yoon et al. ICLR 2019)

Transcriptomics: 
Chaudhari et al. Soft Computing 2019; 
Vinas et al. Bioinformatics 2021; 
Li et al. BMC Bioinformatics 2023.

State-of-the-art deep generative models

penalty
Wasserstein 

distance

http://progress_bar_id
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19Ho et al. Denoising Diffusion Probabilistic Models (NeurIPS 2020)
Song et al. Denoising diffusion implicit models (ICLR, 2021)

Variational autoencorders (VAEs) Generative adversarial networks (GANs)

High-quality, realistic and 
diverse outputs

Computational complexity

Inference instability

Diffusion models (DMs)

e.g., Denoising Diffusion 
Probabilistic Models (DDPMs), 
Denoising Diffusion Implicit 
Models (DDIMs)

Tabular: TabDDPM (Kotelnikov et al. ICML 
2023), TabSYN (Zhang et al. ICLR 2024)

Transcriptomics: scDiffusion (Luo et al. 
Bioinformatics 2024)

State-of-the-art deep generative models
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Data quality indicators
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Real
Generated

Generated
data

Real
data
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Data quality indicators

21

Real
Generated

Machine Learning 
efficiency (MLE) or 

reverse validation
= knowledge preservation

Generated
data

Real
data

Classifier Classifier

Real test 
data

Accuracy = ?
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Data quality indicators

22Heusel et al., GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium (NeurIPS 2017)

Real
Generated

Generated
data

Real
data

Machine Learning efficiency 
(MLE) or reverse validation

= knowledge preservation

Frechet distance (FD)
= similarity in pre-trained 

reduced space

Pre-trained 
classifier

Real 
activations

Generated 
activations

Wasserstein 
distance = ?
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Data quality indicators
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Real
Generated

Generated
data

Real
data

Machine Learning efficiency 
(MLE) or reverse validation

= knowledge preservation

Frechet distance (FD)
= similarity in pre-trained 

reduced space

Correlation 
similarity or error 
= structural fidelity

Correlation 
matrix

Correlation 
matrix

Correlation or 
error = ?
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Data quality indicators

24

Real
Generated

Generated
data

Real
data

Machine Learning efficiency 
(MLE) or reverse validation

= knowledge preservation

Frechet distance (FD)
= similarity in pre-trained 

reduced space

Correlation 
similarity or error 
= structural fidelity

Improved precision
= distribution overlap

Pre-trained 
classifier

Real 
activations

Generated 
activations

Nearest-neighbors 
closenessKynkäänniemi et al. Improved Precision and Recall Metric for Assessing Generative Models (NeurIPS 2019)
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Data quality indicators
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Real
Generated

Generated
data

Real
data

Machine Learning efficiency 
(MLE) or reverse validation

= knowledge preservation

Frechet distance (FD)
= similarity in pre-trained 

reduced space

Correlation 
similarity or error 
= structural fidelity

Pre-trained 
classifier

Real 
activations

Generated 
activations

Nearest-neighbors 
closenessKynkäänniemi et al. Improved Precision and Recall Metric for Assessing Generative Models (NeurIPS 2019)

Improved recall
= distribution coverage

Improved precision
= distribution overlap
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1. Context

2. State-of-the-art deep generative models

3. Contribution 1: 
Realistic generation with AttGAN

3.1. Self-attention mechanisms
3.2. Domain knowledge
3.3. Results
3.4. Conclusions

4. Contribution 2: Diversity with diffusion models 
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Self-attention mechanisms

Vaswani et al. Attention Is All You Need (NeurIPS 2017)

Attention map (Bahdanau et al., 2014) 

27

Attention: the relevance of each word in 
the input to the final output words

Focus on relevant elements = context

http://progress_bar_id
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Self-attention mechanisms

Vaswani et al. Attention Is All You Need (NeurIPS 2017)

Attention map (Bahdanau et al., 2014) 

28

Sample 

S
am

pl
e 

Can we learn the 
context of each gene?

Focus on relevant elements = context

Attention: the relevance of each word in 
the input to the final output words

http://progress_bar_id
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Attention map (Bahdanau et al., 2014) 

29

Self-attention: captures the relevance of each element 
among other elements within a sequence

Sample 

S
am

pl
e 

where                                       are 
queries, keys and values linear projection matrices

Self-attention mechanisms

Vaswani et al. Attention Is All You Need (NeurIPS 2017)

Our adaptation to tabular data:

Attention: the relevance of each word in 
the input to the final output words

http://progress_bar_id
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Attention map (Bahdanau et al., 2014) 
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Sample 

S
am

pl
e How to handle 

quadratic 
complexity?

Self-attention mechanisms

Vaswani et al. Attention Is All You Need (NeurIPS 2017)

Attention: the relevance of each word in 
the input to the final output words

Self-attention: captures the relevance of each element 
among other elements within a sequence

http://progress_bar_id
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with                 the set of genes 
interacting the most with gene i 
and       the attention score

Including sparse domain knowledge 

31

AttGAN: WGAN-GP + self-attention module based on domain knowledge

Sample 

S
am

pl
e 

❏ Co-expression (Co-exp): statistical view

❏ Protein-protein interactions (PPI): functional view

Zhang et al. Self-Attention Generative Adversarial Networks (ICML 2019)
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with                 the set of genes 
interacting the most with gene i 
and       the attention score

Including sparse domain knowledge 
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AttGAN: WGAN-GP + self-attention module based on domain knowledge

Sample 

S
am

pl
e 

Zhang et al. Self-Attention Generative Adversarial Networks (ICML 2019)

❏ Co-expression (Co-exp): statistical view

❏ Protein-protein interactions (PPI): functional view

❏ Lesion study: random interaction graph of same density
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with                 the set of genes 
interacting the most with gene i 
and       the attention score

Including sparse domain knowledge 
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AttGAN: WGAN-GP + self-attention module based on domain knowledge
Co-exp

head

PPI
head

Random 
knowledge 

graphs heads

Sample 

S
am

pl
e 

RandAttGAN

AttGAN

Zhang et al. Self-Attention Generative Adversarial Networks (ICML 2019)

❏ Co-expression (Co-exp): statistical view

❏ Protein-protein interactions (PPI): functional view

❏ Lesion study: random interaction graph of same density
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with                 the set of genes 
interacting the most with gene i 
and       the attention score

Including sparse domain knowledge 
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AttGAN: WGAN-GP + self-attention module based on domain knowledge
Co-exp

head

PPI
head

Random 
knowledge 

graphs heads

Sample 

S
am

pl
e 

RandAttGAN

AttGAN

Zhang et al. Self-Attention Generative Adversarial Networks (ICML 2019)

❏ Co-expression (Co-exp): statistical view

❏ Protein-protein interactions (PPI): functional view

❏ Lesion study: random interaction graph of same density

Conditioning 
covariates 

(e.g., age, gender, 
tissue type)

http://progress_bar_id
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Evaluation of AttGAN and RandAttGAN

35Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. (Nat Genet 2013)

Baselines:
GAN, WGAN-GP

Performance indicators:
Correlations, Prediction 

performance (MLE)

Adapted indicators:
Fréchet distance (2 MLPs pre-trained for 
binary/multiclass tasks), precision/recall

Benchmark dataset:
The Pan-Cancer Genome Atlas (TCGA) 
with 20,531 genes and ~10k samples

Covariates: patient age, gender, tissue type, cancer target

http://progress_bar_id
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Visual evaluation

UMAP GAN
UMAP 

WGAN-GP

UMAP 
AttGAN

G
enerated

Tr
ue

Tr
ue

G
enerated

G
enerated
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❏ GAN fails

❏ WGAN-GP and 
AttGAN preserve 
tissue clusters
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Data quality indicators
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❏ WGAN-GP outperforms 
on most indicators

❏ Mode collapse issue

http://progress_bar_id
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Data quality indicators
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❏ WGAN-GP outperforms 
on most indicators

❏ Mode collapse issue

Precision (fidelity) vs. recall (diversity) trade-off: 
AttGANs with different attention masks 
(PPI, CoExp, CoExp-PPI, Random) and settings

❏ AttGAN allows to play on this 
trade-off

❏ Lesion study: no impact of random 
attention

http://progress_bar_id
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PCA comparison

39

❏ AttGAN preserves more 
information w.r.t. PCA

Cumulative variance explained from
the top-i principal components

❏ Variance explained by less 
than 500 PCs in WGAN-GP 
generated data
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Predictive accuracy with Data Augmentation

Test accuracy of a MLP trained with N  true samples + 8000 augmented samples

40

❏ WGAN-GP and AttGAN reach significantly higher 
accuracy with fewer true training samples

http://progress_bar_id
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Partial conclusions

❏ Evaluation: a multi-objective problem

❏ Performance: WGAN-GP outperforms AttGAN on fidelity but lacks diversity (e.g., recall 

and PCA), while AttGAN reaches better fidelity-diversity trade-off 

❏ Lesion study: attention performance depends on the additional expressivity not the 
injected knowledge

❏ Data augmentation yields very good performance with very limited true data: 

gain of ~4%/20% accuracy for binary/multiclass tasks  

Take-aways

Publication:
A. Lacan, M. Sebag and B. Hanczar. "GAN-based data augmentation for 
transcriptomics : survey and comparative assessment". In: ISMB, June 2023.
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2. State-of-the-art deep generative models

3. Contribution 1: Realistic generation with AttGAN
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Diffusion framework: DDPM and DDIM

43
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Diffusion framework: DDPM and DDIM
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Diffusion framework: DDPM and DDIM

45

http://progress_bar_id
http://progress_bar_id


Interpolation strategy

46

Can we improve diversity 
with interpolated data?

Pre-trained
classifier

http://progress_bar_id
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Evaluation of DDPM and DDIM
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Performance indicators:
Correlations error, Prediction performance 

(MLE), Precision/recall (F1 score)

Benchmark datasets:

❏ The Pan-Cancer Genome Atlas (TCGA) with d=1,000 genes and n=~10k. 
Covariate: tissue type

❏ The Genotype-Tissue Expression (GTEx) with d=1,000 genes and n=~17k. 
Covariate: tissue type

Baselines:
VAE, WGAN-GP

Lonsdale et al. The genotype-tissue expression (Nature Genetics 2013)

http://progress_bar_id
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Visualizing diffusion process 

48

Top: UMAP of TCGA generated data with tissue coloring. 
Bottom: Same UMAPs with true vs. generated coloring.
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Results

49

DDIM training objective is 
more stable

Loss 
TCGA

Loss 
GTEx

http://progress_bar_id
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Results

50

DDIM training objective is 
more stable

Loss 
TCGA

Loss 
GTEx

DDIM needs 12x (resp. 3x) more parameters to reach 
the same performance on GTEx (resp. TCGA) 

WGAN-GP reaches the best 
performance on the pareto 

front

http://progress_bar_id
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Prediction performance

51

DDPM and DDIM reach the 
best accuracy in reduced 

L1000 space

WGAN-GP remains very 
competitive with state-of-the-art 
results in reconstructed space
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Interpolation results

52

DDIM

WGAN-GP: Interpolations between “blood vessel” and “blood” tissues in GTEx-generated data. 

➔ DDIM latent 
space ill-suited 
for linear 
interpolations

http://progress_bar_id
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Partial conclusions

❏ Performance: WGAN-GP outperforms DMs except on MLE in reduced space where 

DDIM ranks first

❏ Complexity: diffusion is 3-12x more complex while reaching similar fidelity-diversity 

trade-off

❏ Interpolations: DMs latent space is less suited for linear interpolations than the one of 

WGAN-GP

Take-aways

Diffusion for transcriptomics (preprint):
A. Lacan, R. André, M. Sebag and B. Hanczar. "In Silico Generation of 
Gene Expression profiles using Diffusion Models". In: bioRxiv, 2024.
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54

Can we improve the generated data quality? 
➔ High-dimensional distribution remains complex
➔ Sophisticated architectures required
➔ Distributions comparison is unanswered (loss is decorrelated from indicators)

Real

Generated

http://progress_bar_id
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Can we improve the generated data quality? 
➔ High-dimensional distribution remains complex
➔ Sophisticated architectures required
➔ Distributions comparison is unanswered (loss is decorrelated from indicators)

Motivation:
Frugal approximation and comparison with Precision/Recall

Improved precision
= distribution overlap

Improved recall
= distribution coverage

Real

Generated

Can we use such 
comparison as a training 

objective?
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Can we improve the generated data quality? 
➔ High-dimensional distribution remains complex
➔ Sophisticated architectures required
➔ Distributions comparison is unanswered (loss is decorrelated from indicators)

Real

Generated

Intuition:
Two distributions are similar if same support within any region of the space

http://progress_bar_id
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Can we improve the generated data quality? 
➔ High-dimensional distribution remains complex
➔ Sophisticated architectures required
➔ Distributions comparison is unanswered (loss is decorrelated from indicators)

Real

Generated

Intuition:
Two distributions are similar if same support within any region of the space

Proposition:
Frugal regions of 2D-3D rectangles uniformly sampled (density probes)

in
Let’s think outside 

the box…

Do we have similar 
densities in this region?
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Can we improve the generated data quality? 
➔ High-dimensional distribution remains complex
➔ Sophisticated architectures required
➔ Distributions comparison is unanswered (loss is decorrelated from indicators)

Real

Generated

Intuition:
Two distributions are similar if same support within any region of the space

Proposition:
Frugal regions of 2D-3D rectangles uniformly sampled (density probes)

Do we have similar 
densities in all regions?

in
Let’s think outside 

the box…

Do we have similar 
densities in this region?
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1. Context

2. State-of-the-art deep generative models

3. Contribution 1: Realistic generation with AttGAN

4. Contribution 2: Diversity with diffusion models 

5. Contribution 3: 

Trade-off with GMDA

5.1. GMDA 
5.2. Results
5.3. Conclusions

6. Conclusion & perspectives

http://progress_bar_id
http://progress_bar_id


60

Generative Modeling with Density Alignment (GMDA)
Do we have the same density of 

real and fake samples?

Density probes H
❏ Milestone 1: 

Differentiable density approximation

❏ Milestone 2:
Enforce local and global density 
alignment

❏ Milestone 3:
Stochastic density probes (no 
trainable adversary)

http://progress_bar_id
http://progress_bar_id


61

Density approximation

real

generated

Differentiable indicator function: 
cartesian product between 2 or 3 intervals 

(uniformly sampled)

Density probes H
Given d the dimension of x, a and b the 

probe’s interval, we approximate the indicator 
with sigmoids parameterized by 𝜆:

http://progress_bar_id
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Density alignment

Density alignment with 
learning criterion:

Discrepancy 
within probe:

Loss per probe Dark probe

Regions not visited by 
current probes:

real

generated

Density probes H

➔ Generator          takes local density as 
feedback (no adversary)

http://progress_bar_id
http://progress_bar_id


63

Density probes sampling

Persisting probes 

If fixed probes, 
inefficient loss

If stochastic probes, 
highly varying lossNew probes at 

next iteration

Mixed strategy:
Exploitation: persistence of 𝜂 % of probes with high loss 

vs. 
Exploration: (1-𝜂 )% of stochastic probes sampling

Initialization:
Regions: probes centered on real points uniformly sampled

Width: based on desired density rate ẟ 

http://progress_bar_id
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Evaluation of GMDA

64

Performance indicators:
Correlations error, Prediction performance 

(MLE), Precision/recall (F1 score)

Benchmark datasets:
❏ 3 2D toy datasets
❏ 4 medium size tabular datasets (d= 5 to 32 features, n=500 to 15k)
❏ The Pan-Cancer Genome Atlas (TCGA) with d=1,000 genes and n=~10k. 

Covariate: tissue type

❏ The Genotype-Tissue Expression (GTEx) with d=1,000 genes and n=~17k. 
Covariate: tissue type

Baselines:
TVAE, CTGAN, TabDDPM 

Transcriptomics: VAE, WGAN-GP

Lonsdale et al. The genotype-tissue expression (Nature Genetics 2013)
Xu, et al. Modeling tabular data using conditional GAN (NeurIPS 2019)
Kotelnikov et al. TabDDPM: Modelling tabular data with diffusion models (ICML 2023)
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Results on toy datasets

TabDDPM 

TVAE

CTGAN

GMDA

GMDA

GMDA

TabDDPM 

TabDDPM 

CTGAN

CTGAN

TVAE

TVAE
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❏ TabDDPM > GMDA > TVAE > CTGAN
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Results on real datasets
M

ag
ic

W
ilt

66

Correlation errors (the lighter, the better):

Fidelity-diversity 
trade-off 

MLE

❏ GMDA ranks 1st on correlation errors (medium-size)

❏ GMDA ranks second-best after TabDDPM 
on other indicators (medium-size)

http://progress_bar_id
http://progress_bar_id


D
ia

be
te

s
G

es
tu

re

TVAE CTGAN TabDDPM GMDA

Scaling to high dimensions
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Correlation errors (the lighter, the better):

Fidelity-diversity 
trade-off 

MLE

MLE and fidelity-diversity trade-off (F1)

❏ GMDA ranks 1st on correlation errors (medium-size)

❏ GMDA ranks second-best after TabDDPM 
on other indicators (medium-size)

❏ GMDA ranks second-best on transcriptomic data
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Frugality and robustness 
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Model complexity (the lower, the better)

❏ GMDA is at least one order of 
magnitude smaller
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Frugality and robustness 
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MLE w.r.t. the number of probes 

Model complexity (the lower, the better)

❏ GMDA is at least one order of 
magnitude smaller

❏ GMDA is not significantly sensitive to 
its hyper-parameters 
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Partial conclusions 

❏ Performance: GMDA is competitive on different datasets size and complexity 

❏ Dimensionality: GMDA scales up to 1,000 dimensions

❏ Frugality: significant complexity gain by at least one order of magnitude

❏ Robustness: to few hyper-parameters, to small training sets  

Take-aways

GMDA:
A. Lacan, B. Hanczar and M. Sebag.
“Frugal Generative Modeling for Tabular Data". In: ECML-PKDD, September 2024.
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Conclusion & perspectives
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Contributions 
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AttGAN:
A. Lacan, M. Sebag and B. Hanczar. "GAN-based data augmentation for 
transcriptomics : survey and comparative assessment". In: ISMB, June 2023.

GANs for microarray data:
A. Alsamadi, A. Lacan, B. Hanczar and M. Sebag. “Identifying GANs Blind 
Spots in Transcriptomic Data Generation". In: JDSE, September 2024.

Diffusion for transcriptomics (preprint):
A. Lacan, R. André, M. Sebag and B. Hanczar. "In Silico Generation of 
Gene Expression profiles using Diffusion Models". In: bioRxiv, 2024.

GMDA:
A. Lacan, B. Hanczar and M. Sebag.
“Frugal Generative Modeling for Tabular Data". In: ECML-PKDD, September 2024.

Survey on DA feasibility, inclusion 
of self-attention and domain 

knowledge

Evaluation methodology for GANs 
limitations 

Computational requirements of 
diffusion models

Alternative frugal 
generative model 
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Further work
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Representation

➔ Operating in latent space
➔ Bypass decoder with Optimal Transport mapping
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Further work
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Efficiency

➔ Algorithmic: better suited attention and conditioning strategy
➔ Theoretical analysis: formal analysis of GMDA

Representation

➔ Operating in latent space
➔ Bypass decoder with Optimal Transport mapping
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Further work
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Interpretability for transcriptomics

➔ Interpreting attention maps and GMDA’s probes to identify biomarkers 
➔ Interpolation strategy: valuable biological pathways

Efficiency

➔ Algorithmic: better suited attention and conditioning strategy
➔ Theoretical analysis: formal analysis of GMDA

Representation

➔ Operating in latent space
➔ Bypass decoder with Optimal Transport mapping
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Much ado about Large Language Models
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Challenges:

- Tabular data lacks consistent patterns

- Develop large-scale datasets 

- Scalability with dimensions (e.g., converting to sentences)

Advantages:

Foundation models (FMs) learn high-level transferable 
representation (e.g., downstream transfer learning, 
few-shot learning, domain adaptation) 

Intuition: 
Hybrid integration of tabular FMs and omic-specific 
fine-tuning could help generation and predictions 
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Thank you for your 
attention!
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Appendix
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Benchmark Datasets

The Cancer Genome Atlas (TCGA): 
• 9,749 cancerous/non cancerous bulk RNA-seq samples
• 20,531 genes 
• 24 tissue types

Clinical covariates: age, gender, cancer (y/n), tissue type

The Genotype-Tissue Expression (GTEx):
• 17,244 non cancerous bulk RNA-seq samples
• 18,691 genes 
• 26 tissue types

Clinical covariates: age, gender, tissue type

Cancer Genome Atlas Research Network, Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. (Nature Genetics 2013)
Lonsdale et al. The genotype-tissue expressio (GTEx) project. (Nature Genetics 2013) 79
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Data Augmentation on limited real samples

Test accuracy of a MLP 
trained on true samples 
with a varying number 
of augmented samples

❏ Performance reach a 
plateau after adding 
>1,000 augmented 

samples
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Data Augmentation Results per Tissue
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Additional results
Reverse validation:

Label knowledge preservation:
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Knowledge Graphs
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GMDA: evolution on 2D moons

Epoch = 1

Epoch = 5

Epoch = 50

Epoch = 100

Epoch = 150
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Legend:
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GMDA: sensitivity study
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MLE w.r.t. the density rate

MLE w.r.t. the persistence rate
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