

Transcriptomics Data Generation with Deep Generative Models Séminaire Biopuces - 13 Fev. 2025

Alice Lacan

Supervision:

Blaise Hanczar, IBISC, Univ. Evry Michèle Sebag, LISN-CNRS-Inria, Univ. Paris-Saclay

1. Context

- 1.1. Omics and precision medicine
- 1.2. Transcriptomics
- 1.3. Machine Learning for cancer prediction
- 1.4. Small *n*, large *p*
- 1.5. Data augmentation
- 2. State-of-the-art deep generative models
- 3. Contribution 1: Realistic generation with AttGAN
- 4. Contribution 2: Diversity with diffusion models
- 5. Contribution 3: Trade-off with GMDA
- 6. Conclusion & perspectives

Omics and precision medicine

Traditional medicine

Omics and precision medicine

Precision medicine

Transcriptomics

Why? To understand gene expression dynamics

What for?

Dynamic information at a

given time in a given cell

- Disease biomarkers identification
- Capturing drugs effects on gene expression

Transcriptomics

Machine Learning for cancer prediction

Gene expression data as input for data-driven models:

Machine Learning for cancer prediction

Gene expression data as input for data-driven models:

Halevy et al. The unreasonable effectiveness of data (IEEE Intell Syst. 2009)

Hanczar et al. *Phenotypes Prediction from Gene Expression Data with Deep Multilayer Perceptron and Unsupervised Pre-training* (International Journal of Bioscience 2018) Bourgeais et al. *Deep GONet: self-explainable deep neural network based on Gene Ontology for phenotype prediction from gene expression data* (BMC Bioinformatics 2021)

Data augmentation

Transformation-based

Computer vision:

Data augmentation

Y. Lecun et al. *Gradient-based learning applied to document recognition* (IEEE 1998) Elgendy, *Deep Learning for Vision Systems* (2020)

Data augmentation

Model-based

Deep generative models (DGMs):

- □ Variational autoencoders (VAEs)
- Generative Adversarial Networks (GANs)
- Diffusion models (DMs) -
- Large Language Models (LLMs)

Can we adapt DGMs in this small n, large p scenario?

Source:

thispersondoesnotexist.com

Welling et al. *Auto-encoding variational bayes* (ICLR 2014) Karras et al. *Analyzing and improving the image quality of stylegan* (*IEEE/CVF* 2020) Rames et al. *Hierarchical text-conditional image generation with clip latents* (2022)

Objectives of the thesis

Scope: precision medicine with ML and transcriptomics

Can we leverage data augmentation with DGMs to enhance deep learning classification performance?

Objectives:

- Adapt and extend DGMs for transcriptomics
- Proper data quality evaluation
- Data augmentation methodology

Challenges for DGMs:- High dimensional dat

- High dimensional data distribution (~20,000 features)
- Tabular features (less explored in DL)
- Data evaluation

Contributions of the thesis

Contributions of the thesis

A. Lacan, M. Sebag and B. Hanczar. <u>"GAN-based data augmentation for</u> <u>transcriptomics : survey and comparative assessment"</u>. In: ISMB, June 2023.

GANs for microarray data:

A. Alsamadi, A. Lacan, B. Hanczar and M. Sebag. <u>"Identifying GANs Blind</u> <u>Spots in Transcriptomic Data Generation</u>". In: JDSE, September 2024.

Diffusion for transcriptomics (preprint):

A. Lacan, R. André, M. Sebag and B. Hanczar. <u>"In Silico Generation of Gene Expression profiles using Diffusion Models"</u>. In: bioRxiv, 2024.

GMDA:

A. Lacan, B. Hanczar and M. Sebag. <u>"Frugal Generative Modeling for Tabular Data</u>". In: ECML-PKDD, September 2024.

Trade-

off

Diversity

Fidelity

1. Context

2. State-of-the-art deep generative models

- 2.1. Variational autoencoders
- 2.2. Generative adversarial networks
- 2.3. Diffusion models
- 2.4. Data quality indicators
- 3. Contribution 1: Realistic generation with AttGAN
- 4. Contribution 2: Diversity with diffusion models
- 5. Contribution 3: Trade-off with GMDA
- 6. Conclusion & perspectives

State-of-the-art deep generative models

State-of-the-art deep generative models

Goodfellow et al. *Generative adversarial nets.* (NeurIPS 2014) Gulrajani et al. *Improved training of Wasserstein GANs* (NeurIPS 2017)

State-of-the-art deep generative models

Ho et al. *Denoising Diffusion Probabilistic Models* (NeurIPS 2020) Song et al. *Denoising diffusion implicit models* (ICLR, 2021)

Data quality indicators

Data quality indicators

Machine Learning efficiency (MLE) or reverse validation = knowledge preservation

Kynkäänniemi et al. Improved Precision and Recall Metric for Assessing Generative Models (NeurIPS 2019)

Kynkäänniemi et al. Improved Precision and Recall Metric for Assessing Generative Models (NeurIPS 2019)

1. Context

- 2. State-of-the-art deep generative models
- 3. Contribution 1: Realistic generation with AttGAN
 - 3.1. Self-attention mechanisms
 - 3.2. Domain knowledge
 - 3.3. Results
 - 3.4. Conclusions
- 4. Contribution 2: Diversity with diffusion models
- 5. Contribution 3: Trade-off with GMDA
- 6. Conclusion & perspectives

Vaswani et al. Attention Is All You Need (NeurIPS 2017)

AttGAN: WGAN-GP + self-attention module based on domain knowledge

- Co-expression (Co-exp): statistical view
- **Protein-protein interactions (PPI):** functional view

AttGAN: WGAN-GP + self-attention module based on domain knowledge

- Co-expression (Co-exp): statistical view
- **Protein-protein interactions (PPI):** functional view
- Lesion study: random interaction graph of same density

AttGAN

AttGAN: WGAN-GP + self-attention module based on domain knowledge

- Co-expression (Co-exp): statistical view
- Protein-protein interactions (PPI): functional view
- Lesion study: random interaction graph of same density

AttGAN

tissue type)

AttGAN: WGAN-GP + self-attention module based on domain knowledge

- Co-expression (Co-exp): statistical view
- Protein-protein interactions (PPI): functional view
- Lesion study: random interaction graph of same density

RandAttGAN

Evaluation of AttGAN and RandAttGAN

Performance indicators: Correlations, Prediction performance (MLE)

Adapted indicators:

Fréchet distance (2 MLPs pre-trained for binary/multiclass tasks), precision/recall

Credit: National Cancer Institute

Benchmark dataset:

The Pan-Cancer Genome Atlas (TCGA) with 20,531 genes and ~10k samples Covariates: patient age, gender, tissue type, cancer target

Visual evaluation

WGAN-GP and AttGAN preserve tissue clusters UMAP AttGAN

UMAP

WGAN-GP

•	adrenal	•	cervical	•	kidney		prostate	•	testes
٠	bladder	•	colon	•	liver	٠	rectum	•	thymus
•	blood	•	esophagus	•	lung	•	skin	•	thyroid
•	brain	•	eye	•	ovary	•	soft-tissues	•	uterus
٠	breast	٠	head		pancreas	•	stomach		

Generated

Generated
Data quality indicators

	Model	Corr. \uparrow	Precision \uparrow	Recall ↑	FD binary \downarrow	FD tissue \downarrow
0	GAN	14.40	$\textbf{80.3} \pm \textbf{0.27}$	$\textbf{0.0}\pm\textbf{0.0}$	1506121 ± 2617	96611 \pm 99
	WGAN-GP	90.98	99.21 \pm 0.09	49.32 ± 0.24	16452 \pm 1531	638 ± 36
2	AttGAN PPI + CoExp + γ fixed	86.21	79.45 \pm 0.29	72.03 \pm 0.28	32507 \pm 1119	556 \pm 14

WGAN-GP outperforms on most indicators

Mode collapse issue

Data quality indicators

Model	Corr. ↑	Precision \uparrow	Recall ↑	FD binary \downarrow	FD tissue \downarrow
GAN	14.40	80.3 ± 0.27	0.0 ± 0.0	1506121 ± 2617	96611 \pm 99
WGAN-GP	90.98	99.21 \pm 0.09	49.32 ± 0.24	16452 \pm 1531	638 ± 36
AttGAN PPI + CoExp + γ fixed	86.21	79.45 ± 0.29	$\textbf{72.03} \pm \textbf{0.28}$	32507 ± 1119	$\textbf{556} \pm \textbf{14}$

WGAN-GP outperforms on most indicators

Mode collapse issue

Precision (fidelity) vs. recall (diversity) trade-off:

AttGANs with different attention masks (PPI, CoExp, CoExp-PPI, Random) and settings

AttGAN allows to play on this trade-off

Lesion study: no impact of random attention

PCA comparison

Variance explained by less than 500 PCs in WGAN-GP generated data

AttGAN preserves more information w.r.t. PCA

Predictive accuracy with Data Augmentation

Test accuracy of a MLP trained with N true samples + 8000 augmented samples

GAN-GP and AttGAN reach significantly higher accuracy with fewer true training samples

Partial conclusions

Take-aways

- **Evaluation:** a multi-objective problem
- **Performance:** WGAN-GP outperforms AttGAN on fidelity but lacks diversity (e.g., recall and PCA), while AttGAN reaches better fidelity-diversity trade-off
- **Lesion study:** attention performance depends on the additional expressivity not the injected knowledge
- Data augmentation yields very good performance with very limited true data:

gain of ~4%/20% accuracy for binary/multiclass tasks

Publication:

A. Lacan, M. Sebag and B. Hanczar. "GAN-based data augmentation for transcriptomics : survey and comparative assessment". In: ISMB, June 2023.

- 1. Context
- 2. State-of-the-art deep generative models
- 3. Contribution 1: Realistic generation with AttGAN
- 4. Contribution 2: Diversity with diffusion models
 - 4.1. Diffusion framework
 - 4.2. Interpolation strategy
 - 4.3. Results
 - 4.4. Conclusions
- 5. Contribution 3: Trade-off with GMDA
- 6. Conclusion & perspectives

Diffusion framework: DDPM and DDIM

Diffusion framework: DDPM and DDIM

Diffusion framework: DDPM and DDIM

Noise

Generation

Reconstruction

С

Interpolation strategy

Definition Let $\lambda \in \{0., 0.25, 0.5, 0.75, 1.\}$ be the interpolation weight. Let t_1 and t_2 be tissue types conditional variables. Let $z_{\theta}(t)$ be the conditional embedding obtained from input tissue t and parameterized by the embedding layer parameters θ . The final LERP embedding is obtained as follows :

$$z_{\lambda} = \lambda z_{\theta}(t_2) + (1 - \lambda) z_{\theta}(t_1)$$

Evaluation of DDPM and DDIM

Visualizing diffusion process

Top: UMAP of TCGA generated data with tissue coloring. Bottom: Same UMAPs with true vs. generated coloring.

Results

Results

DDIM training objective is more stable

WGAN-GP reaches the best performance on the pareto front

DDIM needs 12x (resp. 3x) more parameters to reach the same performance on GTEx (resp. TCGA)

Prediction performance

DDPM and DDIM reach the best accuracy in reduced L1000 space

0

WGAN-GP remains very competitive with state-of-the-art results in reconstructed space

Interpolation results

WGAN-GP: Interpolations between "blood vessel" and "blood" tissues in GTEx-generated data.

$\lambda =$	0 - 0.7	2.3	0.8	55.9	0.4	1.6	1.0	0.6	0.9	2.4	11	1.0	12	3.1	2.0	2.0	2.4	3.2	0.5	2.9	2.5	1.6	1.8	1.2	3.7	3.2	- 50	out (%)						
$\lambda = 0.2$	25 - 13	3.0	1.8	40.2	0.7	2.2	1.6	11	1.5	3.1	1.8	1.5	18	3.7	2.7	2.7	3.0	3.8	1.1	3.5	3.3	2.3	2.5	1.9	4.2	3.8	- 40	r out						
$\lambda = 0$.5 - 2.2	3.7	7.6	14.0	1.3	2.9	2.7	2.1	2.4	3.9	2.8	2.3	2.6	4.4	3.5	3.5	3.9	4.6	2.0	4.2	4.4	3.2	3.4	2.9	4.9	4.5	- 30	assifie						
$\lambda = 0.7$	75 - <u>16</u>	3.1	34.8	19	0.9	2.4	2.0	14	1.8	3.4	2.2	1.9	2.1	3.7	2.9	3.0	3.3	3.9	1.4	3.4	3.5	2.6	2.8	2.2	4.1	3.8	- 20	ned cla						
$\lambda =$	1-0.8	2.4	54.3	0.7	0.5	1.6	11	0.6	0.9	2.6	13	11	13	3.1	2.2	2.2	2.4	3.1	0.7	2.7	2.7	18	2.0	1.3	3.5	3.1	- 10	etrair						
	Adipose Tissue -	Adrenal Gland -	Blood -	Blood Vessel -	Brain -	Breast -	Colon -	Esophagus -	Heart -	Liver -	Lung -	Muscle -	Nerve -	- Ovary	Pancreas -	Pituitary -	Prostate -	Salivary Gland -	- Skin	Small Intestine -	Spleen -	Stomach -	Testis -	Thyroid -	Uterus -	Vagina -		Pı						
																					DDI	М												
							λ	\ = 0	- 2.3	3.5	11	20.2	2.5	3.5	2.5	2.3	2.4	3.6	2.2	2.4	3.2	4.3	3.4	3.8	4.1	4.2	2.4	4.2	3.5	3.2	3.4	2.5	4.6	4.5
→	DDI	IM	late	ent			$\lambda =$	0.25	- 2.8	3.7	1.4	8.7	3.8	3.9	3.4	3.7	3.0	3.9	2.7	2.8	3.8	4.4	3.7	4.1	4.3	4.4	3.5	4.3	3.6	3.7	3.8	3.1	4.6	4.7
	sna	ICe	ill_9	su rid																												10000001	2.2	5.0
	opu			Sun	lea	l	λ =	= 0.5	- 3.5	4.0	1.9	2.1	3.9	4.4	3.7	4.0	2.9	4.2	3.2	2.9	3.8	4.4	4.0	4.1	4.3	4.9	3.9	4.7	3.9	4.0	3.8	3.5	4.8	
	for	line	ar		lea	l	$\lambda = \lambda$	= 0.5 0.75	- <u>3.5</u> - <u>2.8</u>	4.0 3.9	1.9 14.2	2.1 1.2	3.9 3.3	4.4 3.7	3.7 2.7	4.0 2.4	2.9 2.5	4.2 4.0	3.2 3.1	2.9 2.8	3.8 2.8	4.4 4.3	4.0 4.0	4.1 3.6	4.3 3.9	4.9 4.7	3.9 2.8	4.7 4.1	3.9 4.2	4.0 3.5	3.8 3.5	3.5	4.8	4.5
	for linte	line erpc	ear plat	ion	IEC	l	$\lambda = \lambda = \lambda$	= 0.5 0.75 N = 1	- 3.5 - 2.8 - 0.9	4.0 3.9 2.5	1.9 14.2 53.5	2.1 1.2 0.4	3.9 3.3 0.7	4.4 3.7 1.7	3.7 2.7 1.1	4.0 2.4 0.7	2.9 2.5 1.0	4.2 4.0 2.6	3.2 3.1 1.3	2.9 2.8 1.2	3.8 2.8 1.2	4.4 4.3 3.2	4.0 4.0 2.3	4.1 3.6 2.1	4.3 3.9 2.4	4.9 4.7 3.3	3.9 2.8 0.8	4.7 4.1 2.7	3.9 4.2 2.6	4.0 3.5 1.8	3.8 3.5 2.0	3.5 3.0 1.2	4.8	4.5 3.1

Pretrained classifier output (%)

Partial conclusions

Take-aways

- Performance: WGAN-GP outperforms DMs except on MLE in reduced space where DDIM ranks first
- □ Complexity: diffusion is 3-12x more complex while reaching similar fidelity-diversity trade-off
- Interpolations: DMs latent space is less suited for linear interpolations than the one of WGAN-GP

Diffusion for transcriptomics (preprint):

A. Lacan, R. André, M. Sebag and B. Hanczar. <u>"In Silico Generation of Gene Expression profiles using Diffusion Models"</u>. In: bioRxiv, 2024.

- → High-dimensional distribution remains complex
- → Sophisticated architectures required
- → Distributions comparison is unanswered (loss is decorrelated from indicators)

- → High-dimensional distribution remains complex
- → Sophisticated architectures required
- → Distributions comparison is unanswered (loss is decorrelated from indicators)

Motivation:

Frugal approximation and comparison with Precision/Recall

Can we use such comparison as a training objective?

- → High-dimensional distribution remains complex
- → Sophisticated architectures required
- → Distributions comparison is unanswered (loss is decorrelated from indicators)

Intuition:

Two distributions are similar if same support within any region of the space

- → High-dimensional distribution remains complex
- → Sophisticated architectures required
- → Distributions comparison is unanswered (loss is decorrelated from indicators)

Intuition:

Two distributions are similar if same support within any region of the space

Proposition:

Frugal regions of 2D-3D rectangles uniformly sampled (density probes)

- → High-dimensional distribution remains complex
- → Sophisticated architectures required
- → Distributions comparison is unanswered (loss is decorrelated from indicators)

Intuition:

Two distributions are similar if same support within any region of the space

Proposition:

Frugal regions of 2D-3D rectangles uniformly sampled (density probes)

- 1. Context
- 2. State-of-the-art deep generative models
- 3. Contribution 1: Realistic generation with AttGAN
- 4. Contribution 2: Diversity with diffusion models
- 5. Contribution 3:

Trade-off with GMDA

- 5.1. GMDA
- 5.2. Results
- 5.3. Conclusions
- 6. Conclusion & perspectives

Generative Modeling with Density Alignment (GMDA)

Do we have the same density of real and fake samples?

Milestone 1:
Differentiable density approximation

Milestone 2: Enforce local and global density alignment

 Milestone 3: Stochastic density probes (no trainable adversary)

Density approximation

Given **d** the dimension of **x**, **a** and **b** the probe's interval, we approximate the indicator with **sigmoids** parameterized by λ :

$$\mathbb{I}(x, [a, b]) = \left(\frac{1}{1 + e^{-\lambda(x-a)}}\right) \times \left(\frac{1}{1 + e^{-\lambda(b-x)}}\right)$$

Differentiable indicator function:

cartesian product between 2 or 3 intervals (uniformly sampled)

$$\mathbb{I}(\mathbf{x}, H) = \prod_{i=1}^{d} I(x_i, [a_i, b_i])$$

Density alignment

Density probes sampling

Initialization:

Regions: probes centered on real points uniformly sampled **Width:** based on desired density rate δ

Mixed strategy: Exploitation: persistence of η % of probes with high loss vs.

Exploration: $(1-\eta)$ % of stochastic probes sampling

Evaluation of GMDA

Baselines: TVAE, CTGAN, TabDDPM Transcriptomics: VAE, WGAN-GP

Performance indicators:

Correlations error, Prediction performance (MLE), Precision/recall (F1 score)

Benchmark datasets:

- 3 2D toy datasets
- \Box 4 medium size tabular datasets (*d*= 5 to 32 features, *n*=500 to 15k)
- The Pan-Cancer Genome Atlas (TCGA) with d=1,000 genes and $n=\sim10k$. Covariate: tissue type
- □ The Genotype-Tissue Expression (GTEx) with d=1,000 genes and n=~17k. Covariate: tissue type

Results on toy datasets

TabDDPM > GMDA > TVAE > CTGAN

Results on real datasets

Fidelity-	diversity e-off
Model	Avg.
TVAE	80.43%
CTGAN	13.44%
TabDDPM	l 89.51 %
Gmda	88.09%

	ML	E
	Model	Avg.
	Baseline	-
	TVAE	67.45%
	CTGAN	41.02%
D	TabDDPM	75.32%
2)	GMDA	72.42%

 \mathbf{C}

2

GMDA ranks 1st on correlation errors (medium-size)

GMDA ranks second-best after TabDDPM on other indicators (medium-size)

Scaling to high dimensions

Fidelity-	diversity	MLE						
Madal	Arr	Model	Avg.					
TVAE CTGAN TabDDPM GMDA	Avg. 80.43% 13.44% 4 89.51% 88.09%	Baseline TVAE CTGAN TabDDPM GMDA	67.45% 41.02% 75.32% 72.42%					

MLE and fidelity-diversity trade-off (F1)

	Model		GT	Ex	TCGA					
			MLE	F1 (PR)	MLE	F1 (PR)				
	MLP Class	.]	$99.32_{\pm 0.04}$	-	$93.59{\scriptstyle \pm 0.6}$	-				
	VAE	6	98.98 ± 0.05	$74.28{\scriptstyle \pm 0.1}$	$88.36{\scriptstyle \pm 0.97}$	$82.36{\scriptstyle \pm 0.06}$				
	WGAN-GF		98.76 ± 0.09	$94.66{\scriptstyle \pm 0.1}$	$92.04{\scriptstyle \pm 0.46}$	$93.17_{\pm 0.17}$				
2	Gmda		$98.4{\scriptstyle\pm0.6}$	$79.86{\scriptstyle \pm 0.25}$	89.68 ± 0.4	83.27 ± 0.34				

GMDA ranks 1st on correlation errors (medium-size)

GMDA ranks second-best after TabDDPM on other indicators (medium-size)

GMDA ranks second-best on transcriptomic data

Frugality and robustness

GMDA is at least one order of magnitude smaller

Frugality and robustness

GMDA is at least one order of magnitude smaller

GMDA is not significantly sensitive to its hyper-parameters

Partial conclusions

Take-aways

- **Performance:** GMDA is competitive on different datasets size and complexity
- Dimensionality: GMDA scales up to 1,000 dimensions
- **Frugality:** significant complexity gain by at least one order of magnitude
- **Robustness:** to few hyper-parameters, to small training sets

Conclusion & perspectives

Contributions

Further work

Representation

- → Operating in latent space
- → Bypass decoder with **Optimal Transport** mapping

Further work

Representation

- → Operating in latent space
- → Bypass decoder with **Optimal Transport** mapping

Efficiency

- → Algorithmic: better suited attention and conditioning strategy
- → Theoretical analysis: formal analysis of GMDA

Further work

Representation

- → Operating in **latent space**
- → Bypass decoder with **Optimal Transport** mapping

Efficiency

- → Algorithmic: better suited attention and conditioning strategy
- → Theoretical analysis: formal analysis of GMDA

Interpretability for transcriptomics

- → Interpreting attention maps and GMDA's probes to **identify biomarkers**
- → Interpolation strategy: valuable biological pathways

Much ado about Large Language Models

Article Published: 26 February 2024

scGPT: toward building a foundation model for singlecell multi-omics using generative AI

Haotian Cui, Chloe Wang, Hassaan Maan, Kuan Pang, Fengning Luo, Nan Duan & Bo Wang 🖾

Nature Methods 21, 1470–1480 (2024) Cite this article

104k Acc

Article Accurate predictions on small data with a tabular foundation model

https://doi.org/10.1038/s41586-024-08328-6	Noah Hollmann ^{122,96} , Samuel Müller ¹³⁶ , Lennart Purucker ³ , Arjun Krishnakumar ³ , Max Körfer ³ , Shi Bin Hoo ² , Robin Tibor Schirrmeister ¹⁵ & Frank Hutter ¹²⁸⁰			
Received: 17 May 2024				
Accepted: 31 October 2024				
Published online: 8 January 2025	Tabular data, spreadsheets organized in rows and columns, are ubiquitous across scientific fields, from biomedicine to particle physics to economics and climate science ¹² . The fundamental prediction task of filling in mission values of a label			
Open access				
Check for updates	column based on the rest of the columns is essential for various applications as diverse as biomedical risk models, drug discovery and materials science. Although			

Advantages:

Foundation models (FMs) learn **high-level transferable representation** (e.g., downstream transfer learning, few-shot learning, domain adaptation)

Intuition:

Hybrid integration of tabular FMs and omic-specific fine-tuning could help **generation** and **predictions**

Thank you for your attention!

Appendix

Benchmark Datasets

The Cancer Genome Atlas (TCGA):

- 9,749 cancerous/non cancerous bulk RNA-seq samples
- 20,531 genes
- 24 tissue types

Clinical covariates: age, gender, cancer (y/n), tissue type

The Genotype-Tissue Expression (GTEx):

- 17,244 non cancerous bulk RNA-seq samples
- 18,691 genes
- 26 tissue types

Clinical covariates: age, gender, tissue type

Cancer Genome Atlas Research Network, Weinstein et al. *The Cancer Genome Atlas Pan-Cancer analysis project*. (Nature Genetics 2013) Lonsdale et al. *The genotype-tissue expressio (GTEx) project*. (Nature Genetics 2013)

Data Augmentation on limited real samples

Test accuracy of a MLP trained on true samples with a **varying** number of augmented samples

Performance reach a plateau after adding >1,000 augmented samples

Data Augmentation Results per Tissue

			$N_{true} = 50$	$N_{true} = 50$
	Tissue	$N_{true} = 50$	$N_{fake} = 1000$	$N_{fake} = 3000$
	adrenal	0.81 ± 0.1245	$\textbf{0.9} \pm \textbf{0.0}$	0.84 ± 0.0652
John Stadder		0.4838 ± 0.2805	0.9324 ± 0.0214	0.9568 ± 0.0113
	blood	0.9172 ± 0.0866	0.9517 ± 0.0523	$\bf 0.9724 \pm 0.0289$
	brain	0.9133 ± 0.1097	$\textbf{0.98} \pm \textbf{0.0}$	0.9787 ± 0.003
	breast	0.8 ± 0.0726	0.9913 ± 0.0043	0.9905 ± 0.0036
	cervical	0.4323 ± 0.2999	${\bf 0.8677} \pm {\bf 0.021}$	0.8516 ± 0.0177
	colon	0.5846 ± 0.2851	0.92 ± 0.1204	0.9815 ± 0.0069
esophagus		0.2103 ± 0.2289	$\bf 0.4103 \pm 0.1612$	0.1795 ± 0.1612
X	eye	0.8824 ± 0.2038	0.6 ± 0.5477	0.5882 ± 0.5375
	head	0.7453 ± 0.2219	0.9302 ± 0.0338	0.9453 ± 0.0301
	kidney	0.7586 ± 0.201	0.9841 ± 0.0024	0.9877 ± 0.0048
	liver	0.8378 ± 0.0469	0.94 ± 0.0186	0.9556 ± 0.0
	lung	0.4141 ± 0.2504	0.9507 ± 0.0079	0.9498 ± 0.0158
	ovary	0.6281 ± 0.2778	1.0 ± 0.0	0.993 ± 0.0096
	pancreas	0.551 ± 0.2126	0.9306 ± 0.0341	$\textbf{0.9714} \pm \textbf{0.0112}$
	prostate	0.8695 ± 0.1879	1.0 ± 0.0	0.9966 ± 0.0076
	rectum	0.2273 ± 0.085	0.1364 ± 0.2802	0.0 ± 0.0
	skin	0.628 ± 0.2728	0.9699 ± 0.0118	${\bf 0.9785} \pm {\bf 0.0108}$
s	oft-tissues	0.6226 ± 0.183	0.9581 ± 0.0216	0.9323 ± 0.0385
	stomach	0.4088 ± 0.3586	0.6176 ± 0.1348	0.8353 ± 0.1197
	testes	0.8529 ± 0.11	0.9235 ± 0.0161	0.9118 ± 0.036
	thymus	0.725 ± 0.282	0.8167 ± 0.0475	0.8667 ± 0.0349
	thyroid	0.923 ± 0.0598	0.9967 ± 0.0045	0.9885 ± 0.011
	uterus	0.6739 ± 0.1969	0.9261 ± 0.0607	0.9043 ± 0.0917

Table 5. Test accuracy per tissue type after training a MLP (tissue type classification) on either 50 or 100 true samples (N_{true}) and 0, 1000 and 3000 augmented samples (N_{fake}) generated by our best AttGAN model. Best accuracy (given a number of true samples N_{true}) in bold.

Additional results

Reverse validation:

Mo	del	Test accuracy cancer (y/n)	Test accuracy tissue type
GA	AN	0.8228 ± 0.007	0.0856 ± 0.0028
WGAN-0	\mathbf{GP}	0.9839 ± 0.0022	0.9361 ± 0.0027
RandAttGAN PPI + pretra	ain	0.9858 ± 0.0013	0.9333 ± 0.0019
AttGAN PPI + pretrain		0.9826 ± 0.0017	0.934 ± 0.0038
AttGAN PPI + CoExp + pretrain		0.9811 ± 0.0033	0.9276 ± 0.0034
RandAttGAN PPI + CoExp + pretrain		0.9812 ± 0.0039	0.9334 ± 0.0025
AttGAN PPI + CoExp + gamma fixed		0.9843 ± 0.0009	0.9361 ± 0.0026
Baseline on true da	ata	0.9916 ± 0.0015	0.9469 ± 0.0029

Table 2. Reverse validation results: test accuracy of binary and multiclass MLPs trained on 8000 generated samples only and tested on true TCGA test set. Although a MLP trained on generated data only does not outperform the state-of-the-art resuts (baseline results on last row), it reaches very close accuracy results with data generated by the WGAN-GP and the five AttGANs versions.

Label knowledge preservation:

Model	Test accuracy cancer (y/n)	Test accuracy tissue type
GAN	0.9296	0.092
WGAN-GP	0.9823	0.9621
RandAttGAN PPI + pretrain	0.9867	0.969
AttGAN PPI + pretrain	0.9847	0.969
AttGAN PPI + CoExp + pretrain	0.9852	0.9695
RandAttGAN PPI + CoExp + pretrain	0.9838	0.9646
AttGAN PPI + CoExp + gamma fixed	0.9877	0.9621

Table 3. Test accuracy of binary and multiclass MLPs pretrained on true TCGA data and tested on generated data. We observe that the pretrained MLPs are able to correctly label the data generated by the WGAN-GP and the five AttGANs versions (with a higher test accuracy of 96% than the 94% accuracy on true data for tissue classification). However, the accuracy drops for both binary and tissue classification with data generated by the GAN. It seems the generated data does not violate cancer/tissue information except for the GAN.

Knowledge Graphs

Threshold $ au$	I (PPI)	N (PPI)	<i>I</i> (Co-exp.)	N (Co-exp.)
0.7	401,370	14,044	132,588	5,872
0.8	287,970	12,057	33,006	2,648
0.9	199,621	10,187	8,014	758
0.95	92,549	8,369	3,302	335
0.98	54,432	6,591	1,170	148
0.99	39,472	5,502	526	99
0.995	29,928	4,670	218	55

Table 5.1 – Number I of interactions and number N of genes retained depending on the threshold level τ . Given thresholds correspond to the percentage of lowest interactions removed from the knowledge graph (left : PPI; right : Co-exp). The number of genes retained in the experiments is highlighted in bold.

GMDA: evolution on 2D moons

GMDA: sensitivity study

MLE w.r.t. the density rate

MLE w.r.t. the persistence rate