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Context

Example
Medical study focusing on primary biliary cholangitis. Blood albumin
(mg/dl) observed over several years.
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Figure: Albumin observations at multiple time points.
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Longitudinal data

Definition
Data obtained from repeated measurements of a variable, typically made
over time and, often, on multiple individuals.
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Figure: Multiple albumin trajectories

— Number of observations and observation time points may differ!
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Longitudinal data analysis

We denote
» | the subject number with i =1,...,/
» k the observation number k =1,..., K;

> yic the kth observation of ith subject
» t; the time point of observation yx
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Longitudinal data analysis

We denote
» | the subject number with i =1,...,/
» k the observation number k =1,..., K;

> yic the kth observation of ith subject
>t the time point of observation yx

Various frameworks are used to study longitudinal data:
» Linear mixed models [Laird and Ware, 1982],

> Functional data analysis [Ramsay and Silverman, 2005].
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Functional data

Definition
Data that has the form of function, i.e., sampled from some underlying
smooth function (defined on Z C R), sampled from a random process X

vik = Xi(tu) + i, Xi € L2(2),

where we define L2(Z) = {f : T = R, [|f||> = [, f?(s)ds < oo}

\4

Figure: Observations and underlying function

7/37



Functional data analysis

Functional Principal Component Analysis
Considering a random process X

argmax  var((f, X))
Fel2(D), |IFl=1

8/37



Functional data analysis

Functional Principal Component Analysis
Considering a random process X

argmax  var({f, X))
felx(T), |fll=1

Functional Regression
Considering a random process X and a response Y

argmin  E||Y — (f, X}||
fel?(7), ||f]|=1

8/37



Functional data analysis

Functional Principal Component Analysis
Considering a random process X

argmax  var({f, X))
felx(T), |fll=1

Functional Regression
Considering a random process X and a response Y

argmin  E||Y — (f, X}||
fel?(7), ||f]|=1

Many rely on T xx(s,t) = cov(X(s), X(t)) and the associated operator

Tt [2(T) > 2(T), fro g - g(t) = / ¥ (s, £)F(s)ds.

8/37



Functional data analysis

Functional Principal Component Analysis
Considering a random process X

argmax  var({f, X))
felx(T), |fll=1

— Solution derived from eigendecomposition of X xx

Functional Regression

Considering a random process X and a response Y

argmin  E||Y — (f, X}||
fel?(7), ||f]|=1

Many rely on T xx(s,t) = cov(X(s), X(t)) and the associated operator

Tt [2(T) > 2(T), fro g - g(t) = / ¥ (s, £)F(s)ds.

8/37



Functional data analysis

Functional Principal Component Analysis
Considering a random process X

argmax  var({f, X))
felx(T), |fll=1

— Solution derived from eigendecomposition of X xx

Functional Regression

Considering a random process X and a response Y

argmin  E||Y — (f, X}||
fel?(7), ||f]|=1

— Solution involves to Z;&
Many rely on T xx(s,t) = cov(X(s), X(t)) and the associated operator

Tt [2(T) > 2(T), fro g - g(t) = / ¥ (s, £)F(s)ds.
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Covariance estimation

» Local linear smoothing estimation [Fan and Gijbels, 2018]

- Convergence guarantees
- Robust to sparse and irregular sampling
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Figure: Mean function p(s) = E[X(s)] estimation with local linear smoothing.

(A) aggregated observations; (B) estimated mean function.
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Covariance estimation

» Local linear smoothing estimation [Fan and Gijbels, 2018]
- Convergence guarantees

- Robust to sparse and irregular sampling
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Figure: Covariance surface estimation with local linear smoothing. (A) subset
of aggregated raw covariances; (B) estimated covariance surface.
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Covariance estimation

> Local linear smoothing estimation [Fan and Gijbels, 2018]
- Convergence guarantees

- Robust to sparse and irregular sampling

> Fast covariance estimation [Xiao et al., 2014, Xiao et al., 2017]
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Figure: Covariance surface estimation with local linear smoothing. (A) subset
of aggregated raw covariances; (B) estimated covariance surface.

9/37



Multiple biomarkers

Consider now not 1 but 3 blood markers: Blood albumin (mg/dl),
Prothrombin time (s), and Bilirubin concentration (mg/dl)

Objective
» Investigating relationships between markers.

> Integrating associations to improve characterization.

Albumin Bilirubin Prothrombin
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Figure: Observations of blood markers with first trajectories colored.
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Outline

Functional Generalized Canonical Correlation Analysis
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Canonical Correlation Analysis

Definition
Considering 2 sets of random variables x; € RPt, x, € RP2. Investigating
relationships between x; and x, with the CCA [Hotelling, 1936]:

argmax  corr(a; X1,a, X;)
ap,az

st var(a/x;) =1, Vj€{1,2}

p1 P2
> >
X1 X2

Figure: Canonical correlation analysis

a;,a, — canonical vectors ; a; x1,a, X, — canonical components
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Canonical Correlation Analysis for 3 sets

Considering 3 sets x; € R”, x, € R, x3 € RP and denoting their
respective covariance matrices X1, X5, and X33.

> Extending the analysis to multiple sets.

argmax  corr(a; X1,a, Xp) + corr(a; x1, a4 x3)+ corr(ay Txp, a4 x3)

ai,az,as
st a Xya;=1,Vj€{1,23}
I D2 p3
R — > >
X1 X2 X3

Figure: Canonical correlation analysis for 3 sets
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Canonical Correlation Analysis for 3 sets

Considering 3 sets x; € R”, x, € R, x3 € RP and denoting their
respective covariance matrices X1, X5, and X33.

> Extending the analysis to multiple sets.
» Selecting relationships to investigate.

argmax  corr(a; x1,a, Xp) + corr(a; x1,a4 x3)
ap,az,as

st a Xja;=1,Vj€{1,23}

X1 X2 X3

Figure: Hierarchical canonical correlation analysis for 3 sets
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Canonical Correlation Analysis for 3 sets

Considering 3 sets x; € R”, x, € R, x3 € RP and denoting their
respective covariance matrices X1, X5, and X33.

> Extending the analysis to multiple sets.
» Selecting relationships to investigate.
> Adjusting constraints M; = 71, + (1 — 75)X;

argmax  corr(a; x1,a, Xp) + corr(a; x1,a4 x3)
ap,az,as

st. aMja; =1, Vj€{1,2,3}

I D2 D3
R — > >
X1 X2 X3

l |

Figure: Hierarchical canonical correlation analysis for 3 sets
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Regularized Generalized Canonical Correlation Analysis

Definition
Considering J sets x; € RP*_ ... x; € RP/. The RGCCA optimization
problem [Tenenhaus et al., 2017] is defined as:

J J

Ty AT
argmax E E cjrg(cov(a; x;,a; %))
a,...,a jERPL X .- X RPJ =1 =1

st. a/Mja; =1, je{l,....J}

where C = (¢j/) € R/ is the connection design matrix, g is a convex
differentiable function, and M;j is a positive matrix which if often set to
M; = TjIPj + (1 — Tj)zﬂ with 7; € [0, 1]

Figure: Regularized Generalized Canonical Correlation Analysis
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RGCCA package in R

> Russett dataset: 3 blocks of socio-economic data for 47 countries
in 1964: agriculture inequality, industrial development, political
stability.

» RGCCA applied to find associations between the various modalities.

Block-weight vector - comp1 Sample space: agriculture

Comp. 2 (28.1%)

Comp. 1.(69.9%)

Figure: (right) First block weight vector values for each block (left) First vs.
second component for agricultural inequality block.
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Adapting to functional data
With multiple longitudinal markers:

» Modeling markers as random processes X1, X5, X3
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Figure: Investigating relationships between three random processes
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Adapting to functional data
With multiple longitudinal markers:
» Modeling markers as random processes X1, X5, X3
» Investigating relationships with RGCCA
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Figure: Investigating relationships between three random processes
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Adapting to functional data

With multiple longitudinal markers:
» Modeling markers as random processes X1, X5, X3
» Investigating relationships with RGCCA
> Adapting RGCCA to functional data
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Figure: Investigating relationships between three random processes
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Adapting to functional data

Moving the RGCCA framework to the functional setting:
» Random set x; — random process X; (defined on Z; C R)
> Vector a; € RP — function f; € L*(Z;)
» Dot product aJ—-'—xj — L%(Z;) product (f;, X;) = ij fi(s)Xi(s)ds
> Matrix M; € RP/*Pi — Operator M; : L?(Z;) — L*(Z;)
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Functional Generalized Canonical Correlation Analysis

Definition
Considering J random processes Xi, ..., X, defined on Zy,...,7Z,
respectively. Introducing FGCCA optimization problem as:

argmax chﬂg cov((X;, i), (Xjr. fi1))

fiyo, fIELA(T1) X - x L2 J 1j=1

st. (F,Mf)=1, Vje{l, ... J}

with usually M; = 717, + (1 — 7;)X; with 7; €]0, 1].

18/37



Functional Generalized Canonical Correlation Analysis

Definition
Considering J random processes Xi, ..., X, defined on Zy,...,7Z,
respectively. Introducing FGCCA optimization problem as:

argmax chﬂg cov((Xj, fj), (Xjr, fir)))

fiyo, fIELA(T1) X - x L2 J 1j=1

st. (F,Mf)=1, Vje{l, ... J}

with usually M; = 717, + (1 — 7;)X; with 7; €]0, 1].
Defining the cross-covariance surface ¥ (s, t) = cov(X;(s), Xj/(t))
between processes j and j’ and the associated operator:

T, 2(T) = (T | f»—)g:g(t):/ 50 (s, ) (s)ds.

I
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Functional Generalized Canonical Correlation Analysis

Definition
Considering J random processes Xi, ..., X, defined on Zy,...,7Z,
respectively. Introducing FGCCA optimization problem as:

J J
argmax chﬂ/g(<67zlj/6l>))

iy HEL(T) X X 2(T)) 24 15

st. (FMF)Y =1, Vje{l,... J}

with usually M; = 751z, + (1 — 7;)X; with 7; €]0, 1].
Defining the cross-covariance surface ¥ (s, t) = cov(X;(s), X (t))
between processes j and j’ and the associated operator:

Zy i L(5) - PG, Frvg gl = [ Tyl 0f(s)ds

I

— Very convenient! Y can be estimated for sparse and irregular data.
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Solving procedure

» For each f; individually, when fixing f; for j # j’, maximization of
criterion W is easily achieved using the convexity.

> Block Relaxation [de Leeuw, 1994] procedure:

Result: Estimation of f = (f;,...,f))
Initialize fl(o)7 ey fJ(O) randomly
repeat

for j=1to Jdo

) = argmax W(ETTY TR RS LA
fel(z;)
(F,M;f)=1

end
until [W(FE+D)) — W(f))] < ¢;

19/37



Retrieving higher-order functions

» Multivariate setting: projection/deflation of sets of variables x;:

' . (aTa"1a.40Ty.
x; =x; — (a; a;) aja; x;.
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Retrieving higher-order functions
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» Functional setting: limited access to Xj, deflating cross-covariance:
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Retrieving higher-order functions

» Multivariate setting: projection/deflation of sets of variables x;:
’r_ T -1 T
Xj =Xj— (aj aj) ajaj Xj.
» Functional setting: limited access to Xj, deflating cross-covariance:

Proposition
Defining ®; : L*(Z;) — L*(Z;) , f— (£, )

T = (I — ®)%; (7, — ®)),

— We can derive a similar result for uncorrelated components deflation.
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Component estimation

» Multivariate setting:

- Denoting x;; the ith sample of set x;
- Component of ith sample of x; is computed by u; = aJTx,-j
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Component estimation

» Multivariate setting:
- Denoting x;; the ith sample of set x;
- Component of ith sample of x; is computed by u; = aJTx,-j

» Functional setting:
- Denoting Xj; the ith sample of process X;
- Limited view of Xj: component u; = [, fi(t)X;(t)dt approximated
J

Proposition
Assuming u = (uy, ..., uy) and model errors are jointly Gaussian, the
empirical Bayes estimator for u; is

i; = E(u;ly;)

which has a closed-form expression depending on X and fi,...,f;.
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Simulations

» Generating data for J = 2 random processes with shared statistical
structure using M = 6 basis functions on a grid of size K = 30 of
T, =1, = [0,1]. Considering

- No Sparsity/Dense (NA¢, = 0.0)
- Low Sparsity (NAg, = 0.2)

- Medium Sparsity (NAy, = 0.5)

- High Sparsity (NAy, = 0.8)

» Comparing:

- Functional Generalized Canonical Correlation Analysis (FGCCA)
- Functional Principal Component Analysis (FPCA) [Yao et al., 2005]
- Functional Singular Value Decomposition (FSVD) [Yang et al., 2011]
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Performances

Method =7 FGCCA =1 FPCA £ FSVD
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Figure: Performances with MSE(f™) = i 17— f’"||2dt and

MSE(€™) = & S, S0 (e — é.-;")z
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Reminder: primary biliary cholangitis
Objectives

» Investigating relationships between markers.

> Integrating associations to improve characterization.

Details
Data of J = 3 markers on | = 282 subjects with PBC: 140 dead and 142
alive at the end. Considering the first 10 years.

Albumin Bilirubin Prothrombin
8 4
6 ) f/ ]
4+ 0- 204 /\
5. /.4\’_\ N ol ! ,\\/“/

00 25 50 75 100 00 25 50 75 100 00 25 50 75 100
Number of years since enroliment

Figure: Observations of blood markers with first trajectories colored.
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Results: primary biliary cholangitis

Canonical modes

Component 2

Mode — 1 -+ 2 -- 3
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Figure: Canonical functions (top) Canonical component (bottom)
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Outline

Perspectives and limitations
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Extensions

Integrating multivariate response in FGCCA:

+2Zg

argmax E cig((f, X
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Figure: Comparing FPCA and FGCCA with status integration status. (left)
principal and canonical function; (right) balanced accuracy, p-value, and

significance level of difference derived from a t-test.
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Extensions

» Integrating survival information and joint modeling with FGCCA:

) FGCCA R
DR Cox Null

e

4 4 4

O O O (T8

N L

I O Cox
N
Model

Figure: Joint modeling using FGCCA.
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Joint modeling
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Figure: Dynamic prediction. Observations (points), reconstructed trajectories
(black solid lines), survival functions (red solid lines) for 4 subjects. Censoring
(dashed red vertical lines) or death (solid red vertical lines) times are indicated
along with observations not considered (crosses).
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Joint modeling
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Figure: Dynamic prediction. Observations (points), reconstructed trajectories
(black solid lines), survival functions (red solid lines) for 4 subjects. Censoring
(dashed red vertical lines) or death (solid red vertical lines) times are indicated
along with observations not considered (crosses).
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Joint modeling
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Figure: Dynamic prediction. Observations (points), reconstructed trajectories
(black solid lines), survival functions (red solid lines) for 4 subjects. Censoring
(dashed red vertical lines) or death (solid red vertical lines) times are indicated
along with observations not considered (crosses).
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Numerous blocks

Example

Alzheimer Disease Neuroimaging Initiative (ADNI) study. Six
neurocognitive markers observed over several years

Diagnosis — CN — AD

ADAS13 FAQ LDELTOTAL MMSE RAVLT.immediate

T T T T R T ‘- T T v T o — v T T ‘l T T T
00 25 sb 75 10000 25 50 75 10000 25 S0 75 10000 25 S0 75 10000 25 S0 75 10000 25 S0 75 100
Number of years since enrollment

Figure: Trajectories of six neurocognitive markers in the ADNI study colored by
baseline diagnosis: Cognitively Normal (CN), Alzheimer's Disease (AD)
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Numerous blocks

Example
Alzheimer Disease Neuroimaging Initiative (ADNI) study. Six
neurocognitive markers observed over several years

Limitations
» No separable characterization of subject, time, and marker

» Do not integrate potential higher-dimensional structure

Diagnosis — CN — AD

RAVLT.immediate

ADAS13 LDELTOTAL MMSE

Biomarker value
o o o o
o © o ©

e e e e S e s e e Al S S e S
00 25 50 75 10000 25 50 75 1000 25 50 75 10000 25 50 75 10000 25 50 75 10000 25 50 75 100

Number of years since enrollment

Figure: Trajectories of six neurocognitive markers in the ADNI study colored by
baseline diagnosis: Cognitively Normal (CN), Alzheimer's Disease (AD)
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Thank you! Questions?

» Functional Generalized Canonical Correlation Analysis for
studying multiple longitudinal variables, Lucas SORT, Laurent LE
BRUSQUET, Arthur TENENHAUS Biometrics, 2024, vol. 80, no 4.

» Development of new statistical approaches for the
investigation of multiblock and tensor longitudinal data, Lucas
SORT, These de doctorat, Université Paris-Saclay, 2025.
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Local linear smoothing details

» Mean estimation: Aggregating all observations, for each estimation
point s € 7, we consider

I n;
. tik — S
argmin Z Z K ( kh ) (vik — Bo(s) — B1(s)(s — tw))?,
Bo(s),B1(s) =1 k=1

and use [i(s) = fo(s).
» Covariance estimation: Aggregating "raw" covariance

Cxx(t,'k, t,'/) = (y,-k — ﬁ(t;k))(y,-/ — ﬂ(t,'/)) and, similar to before, at
any covariance estimation point (s, t)

I
. tik —S tj t
argmin E g E Ky ( k Ih ) X (Cxx (tik, tir)—

Bo(s:t):Br(s,1),P2(s:8) =7 k=1 1=1;14k
Bo(s, t) — Bu(s, t)(s — ti) — (s, t)(t — ta))?,

and use 3(s, t) = fBo(s, t).
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ADNI application

Diagnosis — CN — AD

ADAS13

Hippocampus

PTAU
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Figure: FGCCA applied on 3 longitudinal markers observed in the ADNI study:

——————— e e e
00 25 50 75 100 00 25 50 75 10.0

T T
0.0 25

Number of years since enrollment

T T
50 75 10.C

ADAS score, hippocampus volume, and protein tau concentration.
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ADNI application

Function — 1 — 2 — 3

ADAS13 Hippocampus PTAU
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Figure: FGCCA applied on 3 longitudinal markers observed in the ADNI study:

ADAS score, hippocampus volume, and protein tau concentration.
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ADNI application

Diagnosis *+ CN -« AD
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Figure: FGCCA applied on 3 longitudinal markers observed in the ADNI study:
ADAS score, hippocampus volume, and protein tau concentration.
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