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Context

Example
Medical study focusing on primary biliary cholangitis. Blood albumin
(mg/dl) observed over several years.
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Figure: Albumin observations at multiple time points.
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Longitudinal data

Definition
Data obtained from repeated measurements of a variable, typically made
over time and, often, on multiple individuals.
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Figure: Multiple albumin trajectories

→ Number of observations and observation time points may differ!
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Longitudinal data analysis

We denote

▶ i the subject number with i = 1, . . . , I

▶ k the observation number k = 1, . . . ,Ki

▶ yik the kth observation of ith subject

▶ tik the time point of observation yik

Various frameworks are used to study longitudinal data:

▶ Linear mixed models [Laird and Ware, 1982],

▶ Functional data analysis [Ramsay and Silverman, 2005].
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Functional data

Definition
Data that has the form of function, i.e., sampled from some underlying
smooth function (defined on I ⊂ R), sampled from a random process X

yik = Xi (tik) + εik , Xi ∈ L2(I),

where we define L2(I) =
{
f : I → R, ∥f ∥2 =

∫
I f 2(s)ds < ∞

}
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+

+ +
+

ti2 ti3 ti5ti4ti1

Figure: Observations and underlying function
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Functional data analysis

Functional Principal Component Analysis
Considering a random process X

argmax
f∈L2(I), ∥f ∥=1

var(⟨f ,X ⟩)

→ Solution derived from eigendecomposition of ΣXX

Functional Regression
Considering a random process X and a response Y

argmin
f∈L2(I), ∥f ∥=1

E∥Y − ⟨f ,X ⟩∥

→ Solution involves to Σ−1
XX

Many rely on ΣXX (s, t) = cov(X (s),X (t)) and the associated operator

ΣXX : L2(I) → L2(I) , f 7→ g : g(t) =

∫
I
ΣXX (s, t)f (s)ds.
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Covariance estimation
▶ Local linear smoothing estimation [Fan and Gijbels, 2018]

- Convergence guarantees
- Robust to sparse and irregular sampling

▶ Fast covariance estimation [Xiao et al., 2014, Xiao et al., 2017]
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Figure: Mean function µ(s) = E[X (s)] estimation with local linear smoothing.
(A) aggregated observations; (B) estimated mean function.
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Figure: Covariance surface estimation with local linear smoothing. (A) subset
of aggregated raw covariances; (B) estimated covariance surface.
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Multiple biomarkers

Consider now not 1 but 3 blood markers: Blood albumin (mg/dl),
Prothrombin time (s), and Bilirubin concentration (mg/dl)

Objective

▶ Investigating relationships between markers.

▶ Integrating associations to improve characterization.

Albumin Bilirubin Prothrombin
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Figure: Observations of blood markers with first trajectories colored.
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Canonical Correlation Analysis

Definition
Considering 2 sets of random variables x1 ∈ Rp1 , x2 ∈ Rp2 . Investigating
relationships between x1 and x2 with the CCA [Hotelling, 1936]:

argmax
a1,a2

corr(a⊤1 x1, a
⊤
2 x2)

s.t. var(a⊤j xj) = 1, ∀j ∈ {1, 2}

Figure: Canonical correlation analysis

a1, a2 → canonical vectors ; a⊤1 x1, a
⊤
2 x2 → canonical components
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Canonical Correlation Analysis for 3 sets

Considering 3 sets x1 ∈ Rp1 , x2 ∈ Rp2 , x3 ∈ Rp3 and denoting their
respective covariance matrices Σ11,Σ22 and Σ33.

▶ Extending the analysis to multiple sets.

▶ Selecting relationships to investigate.

▶ Adjusting constraints Mj = τj Ipj + (1− τj)Σjj

argmax
a1,a2,a3

corr(a⊤1 x1, a
⊤
2 x2) + corr(a⊤1 x1, a

⊤
3 x3)+ corr(a2⊤x2, a

⊤
3 x3)

s.t. a⊤j Σjjaj = 1, ∀j ∈ {1, 2, 3}

Figure: Canonical correlation analysis for 3 sets
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Regularized Generalized Canonical Correlation Analysis

Definition
Considering J sets x1 ∈ Rp1 , . . . , xJ ∈ RpJ . The RGCCA optimization
problem [Tenenhaus et al., 2017] is defined as:

argmax
a1,...,aJ∈Rp1×···×RpJ

J∑
j=1

J∑
j′=1

cjj′g(cov(a
⊤
j xj , a

⊤
j′ xj′))

s.t. a⊤j Mjaj = 1, j ∈ {1, . . . , J}

where C = (cjj′) ∈ RJ×J is the connection design matrix, g is a convex
differentiable function, and Mj is a positive matrix which if often set to
Mj = τj Ipj + (1− τj)Σjj with τj ∈ [0, 1].

...

Figure: Regularized Generalized Canonical Correlation Analysis
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RGCCA package in R

▶ Russett dataset: 3 blocks of socio-economic data for 47 countries
in 1964: agriculture inequality, industrial development, political
stability.

▶ RGCCA applied to find associations between the various modalities.
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Adapting to functional data
With multiple longitudinal markers:

▶ Modeling markers as random processes X1,X2,X3

▶ Investigating relationships with RGCCA

▶ Adapting RGCCA to functional data

Figure: Investigating relationships between three random processes
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Adapting to functional data

Moving the RGCCA framework to the functional setting:

▶ Random set xj → random process Xj (defined on Ij ⊂ R)
▶ Vector aj ∈ Rpj → function fj ∈ L2(Ij)
▶ Dot product a⊤j xj → L2(Ij) product ⟨fj ,Xj⟩ =

∫
Ij
fj(s)Xj(s)ds

▶ Matrix Mj ∈ Rpj×pj → Operator Mj : L
2(Ij) → L2(Ij)

17 / 37



Functional Generalized Canonical Correlation Analysis

Definition
Considering J random processes X1, . . . ,XJ defined on I1, . . . , IJ
respectively. Introducing FGCCA optimization problem as:

argmax
f1,...,fJ∈L2(I1)×···×L2(IJ )

J∑
j=1

J∑
j′=1

cjj′g(cov(⟨Xj , fj⟩, ⟨Xj′ , fj′⟩))

s.t. ⟨fj ,Mj fj⟩ = 1, ∀j ∈ {1, . . . , J}

with usually Mj = τj IIj + (1− τj)Σjj with τj ∈]0, 1].

Defining the cross-covariance surface Σjj′(s, t) = cov(Xj(s),Xj′(t))
between processes j and j ′ and the associated operator:

Σjj′ : L
2(Ij) → L2(Ij′) , f 7→ g : g(t) =

∫
Ij

Σjj′(s, t)f (s)ds.

→ Very convenient! Σjj′ can be estimated for sparse and irregular data.
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Solving procedure

▶ For each fj individually, when fixing fj for j ̸= j ′, maximization of
criterion Ψ is easily achieved using the convexity.

▶ Block Relaxation [de Leeuw, 1994] procedure:

Result: Estimation of f = (f1, . . . , fJ)

Initialize f
(0)
1 , . . . , f

(0)
J randomly

repeat
for j = 1 to J do

f
(s+1)
j = argmax

f∈L2(Ij )
⟨f ,Mj f ⟩=1

Ψ(f
(s+1)
1 , . . . , f

(s+1)
j−1 , f , f

(s)
j+1, . . . , f

(s)
J )

end

until |Ψ(f(s+1))−Ψ(f(s))| < ε;
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Retrieving higher-order functions

▶ Multivariate setting: projection/deflation of sets of variables xj :

x′j = xj − (a⊤j aj)
−1aja

⊤
j xj .

▶ Functional setting: limited access to Xj , deflating cross-covariance:

Proposition
Defining Φj : L

2(Ij) → L2(Ij) , f 7→ ⟨fj , f ⟩fj

Σ′
jj′ = (IIj −Φj)Σjj′(IIj′ −Φj′),

→ We can derive a similar result for uncorrelated components deflation.
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Component estimation

▶ Multivariate setting:

- Denoting xij the ith sample of set xj
- Component of ith sample of xj is computed by uij = a⊤j xij

▶ Functional setting:

- Denoting Xij the ith sample of process Xj

- Limited view of Xij : component uij =
∫
Ij
fj(t)Xij(t)dt approximated

Proposition
Assuming u = (u1, . . . , uJ) and model errors are jointly Gaussian, the
empirical Bayes estimator for ui is

ũi = E(ui |yi )

which has a closed-form expression depending on Σjj′ and f1, . . . , fJ .
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Simulations

▶ Generating data for J = 2 random processes with shared statistical
structure using M = 6 basis functions on a grid of size K = 30 of
I1 = I2 = [0, 1]. Considering

- No Sparsity/Dense (NA% = 0.0)
- Low Sparsity (NA% = 0.2)
- Medium Sparsity (NA% = 0.5)
- High Sparsity (NA% = 0.8)

▶ Comparing:

- Functional Generalized Canonical Correlation Analysis (FGCCA)
- Functional Principal Component Analysis (FPCA) [Yao et al., 2005]
- Functional Singular Value Decomposition (FSVD) [Yang et al., 2011]
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Performances
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Reminder: primary biliary cholangitis

Objectives

▶ Investigating relationships between markers.

▶ Integrating associations to improve characterization.

Details
Data of J = 3 markers on I = 282 subjects with PBC: 140 dead and 142
alive at the end. Considering the first 10 years.
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Figure: Observations of blood markers with first trajectories colored.
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Results: primary biliary cholangitis

Albumin Bilirubin Prothrombin
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Figure: Canonical functions (top) Canonical component (bottom)
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Extensions
▶ Integrating multivariate response in FGCCA:

argmax
f1,...,fJ ,∈Ω1×···×ΩJ

∥a∥2=1

∑
j ̸=j′

cjj′g(⟨fj ,Σjj′ fj′⟩) + 2
∑
j

g(⟨fj ,Σjya⟩). (1)
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Figure: Comparing FPCA and FGCCA with status integration status. (left)
principal and canonical function; (right) balanced accuracy, p-value, and
significance level of difference derived from a t-test.
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Extensions

▶ Integrating survival information and joint modeling with FGCCA:

FGCCA

∼ ∼ ∼ r
DR Cox Null

Model

Cox
Model

(Ti , δi )

Figure: Joint modeling using FGCCA.
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Joint modeling
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Figure: Dynamic prediction. Observations (points), reconstructed trajectories
(black solid lines), survival functions (red solid lines) for 4 subjects. Censoring
(dashed red vertical lines) or death (solid red vertical lines) times are indicated
along with observations not considered (crosses).
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Numerous blocks

Example
Alzheimer Disease Neuroimaging Initiative (ADNI) study. Six
neurocognitive markers observed over several years

Limitations
▶ No separable characterization of subject, time, and marker

▶ Do not integrate potential higher-dimensional structure
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Figure: Trajectories of six neurocognitive markers in the ADNI study colored by
baseline diagnosis: Cognitively Normal (CN), Alzheimer’s Disease (AD)
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Thank you! Questions?

▶ Functional Generalized Canonical Correlation Analysis for
studying multiple longitudinal variables, Lucas SORT, Laurent LE
BRUSQUET, Arthur TENENHAUS Biometrics, 2024, vol. 80, no 4.

▶ Development of new statistical approaches for the
investigation of multiblock and tensor longitudinal data, Lucas
SORT, Thèse de doctorat, Université Paris-Saclay, 2025.
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Local linear smoothing details

▶ Mean estimation: Aggregating all observations, for each estimation
point s ∈ I, we consider

argmin
β0(s),β1(s)

I∑
i=1

ni∑
k=1

K1

(
tik − s

h

)
(yik − β0(s)− β1(s)(s − tik))

2,

and use µ̂(s) = β0(s).

▶ Covariance estimation: Aggregating ”raw” covariance
CXX (tik , til) = (yik − µ̂(tik))(yil − µ̂(til)) and, similar to before, at
any covariance estimation point (s, t)

argmin
β0(s,t),β1(s,t),β2(s,t)

I∑
i=1

ni∑
k=1

ni∑
l=1;l ̸=k

K2

(
tik − s

h
,
til − t

h

)
× (CXX (tik , til)−

β0(s, t)− β1(s, t)(s − tik)− β2(s, t)(t − til))
2,

and use Σ̂(s, t) = β0(s, t).
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ADNI application

ADAS13 Hippocampus PTAU
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Figure: FGCCA applied on 3 longitudinal markers observed in the ADNI study:
ADAS score, hippocampus volume, and protein tau concentration.
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ADNI application
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Figure: FGCCA applied on 3 longitudinal markers observed in the ADNI study:
ADAS score, hippocampus volume, and protein tau concentration.
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