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(1) Background and aim of the project



 oxidative damage is common to many abiotic
stresses, e.g. drought, cold and salinity

 antioxidant molecules play an important role in 
preventing oxidative damage

 most of the secondary metabolites induced by 
abiotic stress are antioxidants (Nakabayashi
and Saito 2015)

 studying the genetics of secondary metabolites
can contribute to the understanding of the 
tolerance to abiotic stress

(1) Background



 to elucidate the bases of metabolic
variation in response to abiotic stresses in 
sunflower through a genetic association 
approach (metabolic QTLs or mQTLs)

 to complement the information already
available from transcriptomic and 
metabolomic studies

(1) Aim of the project



 GWAS = genome-wide association study
 association study = search for statistical

associations among phenotypes and 
molecular variation in an appropriated
population (for instance with high levels of 
diversity and recombination)

 typically based on SNPs

(1) GWAS



(1) GWAS

Phenotype Genotype

1 1

1 1

1 1

1 1

1 1

0 0

0 0

0 0

0 0

0 0

1

2



(1) GWAS



(1) GWAS



(2) Experimental setup



 475 hybrid genotypes obtained by 
crossing 36 male genotypes and 36 
female genotypes following an 
incomplete factorial design

(2) Plant material



(2) Plant material



 475 hybrid genotypes obtained by 
crossing 36 male genotypes and 36 
female genotypes following an 
incomplete factorial design

 good overall representation of the 
genetic diversity found in cultivated
sunflower

(2) Plant material



(2) Plant material



 untargeted analysis by LC-MS using an 
Orbitrap-MS (Thermo Fischer) after
ethanol / water (80:20) extraction from
n-4 topmost leaves

 protocol that isolates the semi-polar
fraction of metabolome

 suited to target secondary metabolites
 single-step MS analysis: peaks can only

be annotated in silico

(2) Metabolome analysis



 obtained by Illumina resequencing of the 
72 parental lines (Badouin et al 2017)

 14,127,553 SNPs initially detected
 filtering for MAF < 0.1 
 filtering for SNPs in complete linkage 

disequilibrium: 1 SNP kept for each set of 
co-inherited SNPs

 350,052 SNPs eventually retained 
(‘reference SNPs’)

(2) Genotyping
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(3) Results



(3) GWAS

 450 individuals retained for the analysis
 2.557 MS peaks retained after filtering
 955 MS peaks (37%) associated to 27,246 

unique SNPs from GWAS
 62,135 total associations among MS 

peaks and SNPs



(3) Co-localization with QTLs

 QTLs for drought, cold and nutrient
stress and for productivity-related traits

 distance QTL – SNPs ≤ 50 kb
 638 SNPs co-localize with QTLs
 120 peaks co-localize with stress-

related QTLs
 25 peaks co-localize with productivity-

related QTLs
 137 total peaks co-localize with QTLs 

(8 peaks shared by the 2 groups)



(3) Peak annotation

 in silico only workflow: 

• analysis of raw chemical formulas (PubChem)
• search on the ‘KNApSAcK’ database
• search on the ‘Natural Products’ database
• direct web search

 30 putatively annotated peaks, among which
9 terpenes, 5 flavonoids, 4 polyacetylenes, 3 
cinnamic acids and 2 phenolic acids

 7 to 16 of these molecules belong to 
biochemical classes known as antioxidants



(3) Peak annotation
Peak Molecule Class

M201T581 4,5,9,10-dehydroisolongifolene isomer A Sesquiterpenes
M203T379 Demethoxyencecalin Chromenes
M287T548 Cyanidin Flavonoids
M289T534 Pentahydroxychalcone Flavonoids
M307T374 Brachystemidine A Pyrroles
M349T519 Hexahydroxydimethylflavanone Flavonoids
M131T321 2-Nonene-4,6,8-triyn-1-ol Polyacetylenes
M294T138 deoxyfructosyl-leucine Amino-acid derivatives
M145T650 1,9-Undecadiene-5,7-diyne Polyacetylenes
M151T299 Coumaryl-alcohol isomer A Cinnamic acids
M151T342 Coumaryl-alcohol isomer B Cinnamic acids
M165T301 Coumaric acid Cinnamic acids
M173T648 1,4-Tridecadiene-7,9-diyne Polyacetylenes
M175T609 (2E,4E)-5-phenylpenta-2,4-dienoic acid Styrenes
M201T687 4,5,9,10-dehydroisolongifolene isomer B Sesquiterpenes
M202T649 4,5,9,10-dehydroisolongifolene isomer C Sesquiterpenes
M217T336 (3S,9Z)-pentadeca-9,14-dien-4,6-diyn-3-ol Polyacetylenes
M231T299 Dehydrocostus lactone isomer A Sesquiterpenes
M231T362 Dehydrocostus lactone isomer B Sesquiterpenes
M231T604 Dehydrocostus lactone isomer C Sesquiterpenes
M243T272 Lumichrome Alloxazines
M247T334 Annuolide A Sesquiterpenes
M249T273 Annuolide E Sesquiterpenes
M266T572 Heliannuol F Sesquiterpenes
M273T341 8-Acetoxy-1,9,14-pentadecatriene-4,6-diyn-3-ol Polyacetylenes

M273T635_2 Androst-5-en-4-one Steroids
M299T342 3-phenyl-1-(2,3,4-trimethoxyphenyl)prop-2-en-1-one Flavonoids
M346T682 Tambulin Flavonoids
M372T338 4-(2-Amino-3-hydroxyphenyl)-4-oxobutanoic acid glucoside Phenolic compounds
M515T343 Eugenol acetylrhamnosylglucoside Phenolic compounds
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(3) Identification of candidate genes

 genes considered as candidates only with
SNPs directly landing in exons

 new tBLASTn analysis of all the sequences to 
obtain a more up-to-date annotation 

Molecule Class Gene Blast

Pentahydroxychalcone flavonoids Chr03g0130651 Cytochrome P450

Hexahydroxydimethyl-
flavanone

flavonoids

Chr11g0515571
UDP-glycosyltransferase 73E1, 

likely family 1

Chr11g0515581
UDP-glycosyltransferase 73E1, 

likely family 1

Chr11g0515591
UDP-glycosyltransferase 73E1, 

likely family 1

Heliannuol F terpenes Chr09g0363371
UDP-glycosyltransferase 74G1, 

likely family 1

Dehydroisolongifolene terpenes
Chr07g0314841 AP2/ERF transcription factor

Chr07g0314871 AP2/ERF transcription factor



(3) UGTs

 uridine diphosphate (UDP) glycosyl-
transferases (UGTs) transfer glycosyl
residues to acceptor molecules

 ‘family 1’ UGTs is specific to secondary
metabolites, e.g. terpenes, flavonoids, and 
cinnamic acids (Vogt and Jones 2000)

 glycosylation increases solubility and 
activity of these compounds

 the expression of UGTs is induced by 
several abiotic stresses



(3) Mechanism of UGTs

 UGTs enhance the plant antioxidant capacity
by glycosylating secondary metabolites and 
provide, for instance, tolerance to:

• cold stress in tea plant 
(nerolidol, Zhao et al 2020)

• drought, cold and salinity stress in 
Arabidopsis (anthocyanin, Li et al 2017)



(3) Mechanism of UGTs

Adapted from Zhao et al 2020

UGT91Q2

Nerolidol



(4) Next steps

 further analysis on the candidate 
genes, e.g. search for missense
mutations

 characterization of UGTs across
different genotypes
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(3) Unsupervised search for candidates



(3) THE ‘mlmm.gwas’ R PACKAGE

 mlmm = multi-locus mixed model
 linear mixed model: the kinship matrix is

a random polygenic term 
 multi-locus approach: no multiple 

testing correction needed
 several SNPs are identified, then filtered

based on the extended Bayesian
information criterion (eBIC)



(3) Unsupervised search for candidates

 based on all the SNPs associated to MS 
peaks, i.e. irrespective of their co-
localization with previously known QTLs

 1,768 SNPs in the exons of 533 genes
 enrichment analysis using ‘GO process’, 

‘GO function’ and ‘KEGG’ pathways



(3) Enrichment analysis

 analysis performed with ClueGO
 adjusted p-value for groups = 0.05



Term
Ontology
source

BH-adjusted
p-value

Post-embryonic plant morphogenesis GO 0.0042

Glutathione metabolism KEGG 0.0014

Sphingolipid signaling pathway KEGG 0.0242

Flavonoid biosynthesis KEGG 0.0016

Lipid catabolic process GO 0.0012

 p-values are not especially robust, but can
be considered acceptable in this context

 no new tBLASTn analysis to to obtain a more 
up-to-date annotation 

(3) Enrichment analysis
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(3) Identification of hot spots

 at least 20 clusters of metabolite-related
genes are reported in species such as rice, 
tomato, Arabidopsis and Lotus

 mainly related to the biosynthesis of 
terpenes, cyanogenic glucosides and 
alkaloids

 typically consisting of 3 – 10 genes
(Nützmann et al 2016)
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 the 6 identified hot spots span 24 Mbs, i.e. 
0.7 % of the genome

 they harbour a relevant percentage of 
mSNPs, i.e. 6,574 out of 27,246 (24 %)

 they also harbour a relevant percentage of 
mGenes: 92 out of 533 (17 %)

(3) Identification of hot spots



(4) Next steps


