FIRST INSIGHTS INTO THE GENETIC CONTROL OF ABIOTIC STRESS-RELATED METABOLITES IN SUNFLOWER USING GWAS

Marco Moroldo | ASTR team

- 1) background and aim of the projet
- 2) experimental design and analysis workflow
- 3) results
- 4) next steps

(1) Background and aim of the project

(1) Background

- oxidative damage is common to many abiotic stresses, e.g. drought, cold and salinity
- antioxidant molecules play an important role in preventing oxidative damage
- most of the secondary metabolites induced by abiotic stress are antioxidants (Nakabayashi and Saito 2015)
- studying the genetics of secondary metabolites can contribute to the understanding of the tolerance to abiotic stress

(1) Aim of the project

- to elucidate the bases of metabolic variation in response to abiotic stresses in sunflower through a genetic association approach (metabolic QTLs or mQTLs)
- to complement the information already available from transcriptomic and metabolomic studies

- GWAS = genome-wide association study
- association study = search for statistical associations among phenotypes and molecular variation in an appropriated population (for instance with high levels of diversity and recombination)
- typically based on SNPs

(1) GWAS

(1) GWAS

SNP1 AG AA AA AA AA AA GA AA AA AA f(A) = 18/20 × 100 = 90% f(G) = 2/20 × 100 = 10%

AA AA AA GA AA AA AA AA GA AA $f(A) = 18/20 \times 100 = 90\%$ $f(G) = 2/20 \times 100 = 10\%$

(1) GWAS

(2) Experimental setup

 475 hybrid genotypes obtained by crossing 36 male genotypes and 36 female genotypes following an incomplete factorial design

Males

- 475 hybrid genotypes obtained by crossing 36 male genotypes and 36 female genotypes following an incomplete factorial design
- good overall representation of the genetic diversity found in cultivated sunflower

(2) Metabolome analysis

- untargeted analysis by LC-MS using an Orbitrap-MS (Thermo Fischer) after ethanol / water (80:20) extraction from n-4 topmost leaves
- protocol that isolates the semi-polar fraction of metabolome
- suited to target secondary metabolites
- single-step MS analysis: peaks can only be annotated *in silico*

(2) Genotyping

- obtained by Illumina resequencing of the 72 parental lines (Badouin et al 2017)
- 14,127,553 SNPs initially detected
- filtering for MAF < 0.1
- filtering for SNPs in complete linkage disequilibrium: 1 SNP kept for each set of co-inherited SNPs
- 350,052 SNPs eventually retained ('reference SNPs')

(3) Results

- 450 individuals retained for the analysis
- 2.557 MS peaks retained after filtering
- 955 MS peaks (37%) associated to 27,246 unique SNPs from GWAS
- 62,135 total associations among MS peaks and SNPs

- QTLs for drought, cold and nutrient stress and for productivity-related traits
- distance QTL SNPs ≤ 50 kb
- 638 SNPs co-localize with QTLs
- 120 peaks co-localize with stressrelated QTLs
- 25 peaks co-localize with productivityrelated QTLs
- 137 total peaks co-localize with QTLs (8 peaks shared by the 2 groups)

(3) Peak annotation

• *in silico* only workflow:

- analysis of raw chemical formulas (PubChem)
- search on the 'KNApSAcK' database
- search on the 'Natural Products' database
- direct web search
- 30 putatively annotated peaks, among which 9 terpenes, 5 flavonoids, 4 polyacetylenes, 3 cinnamic acids and 2 phenolic acids
- 7 to 16 of these molecules belong to biochemical classes known as antioxidants

(3) Peak annotation

Peak	Molecule	Class	
M201T581	4,5,9,10-dehydroisolongifolene isomer A	Sesquiterpenes	
M203T379	Demethoxyencecalin	Chromenes	
M287T548	Cyanidin	Flavonoids	
M289T534	Pentahydroxychalcone	Flavonoids	
M307T374	Brachystemidine A	Pyrroles	
M349T519	Hexahydroxydimethylflavanone	Flavonoids	
M131T321	2-Nonene-4,6,8-triyn-1-ol	Polyacetylenes	
M294T138	deoxyfructosyl-leucine	Amino-acid derivatives	
M145T650	1,9-Undecadiene-5,7-diyne	Polyacetylenes	
M151T299	Coumaryl-alcohol isomer A	Cinnamic acids	
M151T342	Coumaryl-alcohol isomer B	Cinnamic acids	
M165T301	Coumaric acid	Cinnamic acids	
M173T648	1,4-Tridecadiene-7,9-diyne	Polyacetylenes	
M175T609	(2E,4E)-5-phenylpenta-2,4-dienoic acid	Styrenes	
M201T687	4,5,9,10-dehydroisolongifolene isomer B	Sesquiterpenes	
M202T649	4,5,9,10-dehydroisolongifolene isomer C	Sesquiterpenes	
M217T336	(3S,9Z)-pentadeca-9,14-dien-4,6-diyn-3-ol	Polyacetylenes	
M231T299	Dehydrocostus lactone isomer A	Sesquiterpenes	
M231T362	Dehydrocostus lactone isomer B	Sesquiterpenes	
M231T604	Dehydrocostus lactone isomer C	Sesquiterpenes	
M243T272	Lumichrome	Alloxazines	
M247T334	Annuolide A	Sesquiterpenes	
M249T273	Annuolide E	Sesquiterpenes	
M266T572	Heliannuol F	Sesquiterpenes	
M273T341	8-Acetoxy-1,9,14-pentadecatriene-4,6-diyn-3-ol	Polyacetylenes	
M273T635_2	Androst-5-en-4-one	Steroids	
M299T342	3-phenyl-1-(2,3,4-trimethoxyphenyl)prop-2-en-1-one	Flavonoids	
M346T682	Tambulin	Flavonoids	
M372T338	4-(2-Amino-3-hydroxyphenyl)-4-oxobutanoic acid glucoside	Phenolic compounds	
M515T343	Eugenol acetylrhamnosylglucoside	Phenolic compounds	

(3) Peak annotation

Peak	Molecule	Class	
M201T581	4,5,9,10-dehydroisolongifolene isomer A	Sesquiterpenes	
M203T379	Demethoxyencecalin	in Chromenes	
M287T548	Cyanidin	Flavonoids	
M289T534	Pentahydroxychalcone	Flavonoids	
M307T374	Brachystemidine A	Pyrroles	
M349T519	Hexahydroxydimethylflavanone	Flavonoids	
M131T321	2-Nonene-4,6,8-triyn-1-ol	Polyacetylenes	
M294T138	deoxyfructosyl-leucine	Amino-acid derivatives	
M145T650	1,9-Undecadiene-5,7-diyne	Polyacetylenes	
M151T299	Coumaryl-alcohol isomer A	Cinnamic acids	
M151T342	Coumaryl-alcohol isomer B	Cinnamic acids	
M165T301	Coumaric acid	Cinnamic acids	
M173T648	1,4-Tridecadiene-7,9-diyne	Polyacetylenes	
M175T609	(2E,4E)-5-phenylpenta-2,4-dienoic acid	Styrenes	
M201T687	4,5,9,10-dehydroisolongifolene isomer B	Sesquiterpenes	
M202T649	4,5,9,10-dehydroisolongifolene isomer C	Sesquiterpenes	
M217T336	(3S,9Z)-pentadeca-9,14-dien-4,6-diyn-3-ol	Polyacetylenes	
M231T299	Dehydrocostus lactone isomer A	Sesquiterpenes	
M231T362	Dehydrocostus lactone isomer B	Sesquiterpenes	
M231T604	Dehydrocostus lactone isomer C	Sesquiterpenes	
M243T272	Lumichrome	Alloxazines	
M247T334	Annuolide A	Sesquiterpenes	
M249T273	Annuolide E	Sesquiterpenes	
M266T572	Heliannuol F	Sesquiterpenes	
M273T341	8-Acetoxy-1,9,14-pentadecatriene-4,6-diyn-3-ol	Polyacetylenes	
M273T635_2	Androst-5-en-4-one	Steroids	
M299T342	3-phenyl-1-(2,3,4-trimethoxyphenyl)prop-2-en-1-one	Flavonoids	
M346T682	Tambulin	Flavonoids	
M372T338	4-(2-Amino-3-hydroxyphenyl)-4-oxobutanoic acid glucoside	Phenolic compounds	
M515T343	Eugenol acetylrhamnosylglucoside	Phenolic compounds	

(3) Identification of candidate genes

Molecule	Class	Gene	Blast	
Pentahydroxychalcone	flavonoids	Chr03g0130651	Cytochrome P450	
	flavonoids	Chr11g0515571	UDP-glycosyltransferase 73E1, likely family 1	
Hexahydroxydimethyl- flavanone		Chr11g0515581	UDP-glycosyltransferase 73E1, likely family 1	
		Chr11g0515591	UDP-glycosyltransferase 73E1, likely family 1	
Heliannuol F	terpenes	Chr09g0363371	UDP-glycosyltransferase 74G1, likely family 1	
Debudraicalanaifalana	terpenes	Chr07g0314841	AP2/ERF transcription factor	
Denyaraisolongilolene		Chr07g0314871	AP2/ERF transcription factor	

- genes considered as candidates only with SNPs directly landing in exons
- new tBLASTn analysis of all the sequences to obtain a more up-to-date annotation

(3) UGTs

- uridine diphosphate (UDP) glycosyltransferases (UGTs) transfer glycosyl residues to acceptor molecules
- 'family 1' UGTs is specific to secondary metabolites, e.g. terpenes, flavonoids, and cinnamic acids (Vogt and Jones 2000)
- glycosylation increases solubility and activity of these compounds
- the expression of UGTs is induced by several abiotic stresses

(3) Mechanism of UGTs

- UGTs enhance the plant antioxidant capacity by glycosylating secondary metabolites and provide, for instance, tolerance to:
 - cold stress in tea plant (nerolidol, Zhao et al 2020)
 - drought, cold and salinity stress in *Arabidopsis* (anthocyanin, Li et al 2017)

(3) Mechanism of UGTs

(4) Next steps

- further analysis on the candidate genes, e.g. search for missense mutations
- characterization of UGTs across different genotypes

Bibliography:

- Badouin et al 2017. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature
- Li et al 2017. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. *The plant journal*
- Nakabayashi et al 2014. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. *The plant journal*
- Nakabayashi and Saito 2015. Integrated metabolomics for abiotic stress responses in plants. *Current opinion on plant biology*
- Nützmann et al 2016. Plant metabolic clusters from genetics to genomics. New phytologist
- Vogt and Jones 2000. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. *Trends in plant science*
- Zhao et al 2020. Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants. *New phytologist*

Many thanks to:

- Nicolas Langlade
- Annick Moing
- Stéphane Bernillon
- Nicolas Blanchet
- Harold Duruflé
- Vincent Segura
- David Pot
- Gabriela Bindea
- Elise Maigné
- Florie Gosseau
- Pierre Casadebaig

BORDEAUX Metabolome

(3) Unsupervised search for candidates

(3) THE 'mlmm.gwas' R PACKAGE

- mlmm = multi-locus mixed model
- linear mixed model: the kinship matrix is a random polygenic term
- multi-locus approach: no multiple testing correction needed
- several SNPs are identified, then filtered based on the extended Bayesian information criterion (eBIC)

(3) Unsupervised search for candidates

- based on all the SNPs associated to MS peaks, i.e. irrespective of their colocalization with previously known QTLs
- 1,768 SNPs in the exons of 533 genes
- enrichment analysis using 'GO process',
 'GO function' and 'KEGG' pathways

(3) Enrichment analysis

Term	Ontology source	BH-adjusted <i>p</i> -value
Post-embryonic plant morphogenesis	GO	0.0042
Glutathione metabolism	KEGG	0.0014
Sphingolipid signaling pathway	KEGG	0.0242
Flavonoid biosynthesis	KEGG	0.0016
Lipid catabolic process	GO	0.0012

p-values are not especially robust, but can be considered acceptable in this context

 no new tBLASTn analysis to to obtain a more up-to-date annotation

- at least 20 clusters of metabolite-related genes are reported in species such as rice, tomato, *Arabidopsis* and *Lotus*
- mainly related to the biosynthesis of terpenes, cyanogenic glucosides and alkaloids
- typically consisting of 3 10 genes (Nützmann et al 2016)

Proportion of mQTL-associated SNPs on chr 6

- the 6 identified hot spots span 24 Mbs, i.e.
 0.7 % of the genome
- they harbour a relevant percentage of mSNPs, i.e. 6,574 out of 27,246 (24 %)
- they also harbour a relevant percentage of mGenes: 92 out of 533 (17 %)

(4) Next steps

