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Obesity in few words

Obesity : defined as abnormal or excessive fat accumulation
that presents a risk to health

↗ risk of cardiovascular diseases, type II diabetes, cancers, . . .

In 2016 (OMS) :

number of obesity cases x3 since 1975,
39% of overweight adults, 13% obese

BMI (Body Mass Index) : simpler way to assess obesity

BMI = weight (kg)

size2(m2)

(Source figure: https://ib.bioninja.com.au/_Media/bmi-categories_med.jpeg)
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DiOGenes

Each time step (CID: Clinical Investigation Day):

Clinical data

Transcriptomic data:

RT-qPCR
next-generation sequencing (NGS): RNA-Seq and QuantSeq
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Presentation of datasets

clin. RT-qPCR RNA-Seq QuantSeq

Nb var. > 80 284 54 043 32 041

Nb samples
CID1 632 495 451 416

CID2 622 544 389 291

CID3 473 371 164 211

Nb. individuals, RNA-Seq

RNA-Seq CID1 RNA-Seq CID2 RT-qPCR CID1 RT-qPCR CID2
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Visualization of the problem with DiOGenes

Aim: Study the impact of a low-calorie diet on gene regulation

Choice of model for network inference?
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Network inference and RNA-seq data

RNA-seq data:

counts → discrete data;

over-dispersed data (variance > mean).

Network inference method:

Transform data → approach gaussian distribution
→ Gaussian Graphical Model (GGM)

Use appropriate models based on Poisson distribution

Log-linear Poisson graphical model (llgm)
[Allen and Liu, 2012]; Method

hierarchical log-normal Poisson graphical model
[Gallopin et al., 2013].
poisson log-normal model:
[Choi et al., 2017, Chiquet et al., 2019]
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Visualization of the problem with DiOGenes

Aim: Study the impact of a low-calorie diet on gene regulation

Choice of model for network inference: log-linear Poisson
graphical model (llgm)

Which individuals are used to infer the network?
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Choice of individuals
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Problem

Search an imputation method which allows to:

preserve the link between variables (genes)
→ impute missing individuals entirely = impute
simultaneously all variables

Take into account uncertainty which are linked to imputation

Aim: improve the quality of inference by using external
information (important n very small)
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Framework and notation

Matrix X̃ of size n1 × p → expression measures of interest
(RNA-seq);
matrix Y of size n × q → metabolome, phenotypic data,
qPCR expression,. . . ;
n1 samples (individuals) in common between X̃ and Y ;
presence of missing data −→ experimental reasons
missing data supposed to be MAR (Missing At Random).

X̃ Y
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Hot-deck imputation
A set of methods based on the concept of donors [Andridge and Little, 2010]

Definition

Imputed
dataset

Incomplete
dataset

individual with a
missing variable

other individuals
of the same dataset

Computation of
similarities

Imputation

Creation of
a pool of donors

select at random
a donor

In our case:

RNA-seq
data

RNA-seq
data

RNA-seq
data

auxiliary data auxiliary data

auxiliary data

Computation of
similarities

Creation of a
pool of donors
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Multiple imputation
A way to take into account uncertainty which are linked to imputation

Incomplete

dataset X̃

M duplicates
of X̃

M imputed
datasets, X∗,m

Result of statistical analyses
on each dataset

Final result

Imputation Statistical analysis Pool: Combine M results
into a single final result

[Rubin D., 1976, Rubin D., 2012]
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Multiple hot-deck imputation

Incomplete

dataset X̃

M duplicates
of X̃

M imputed
datasets, X∗,m M inferred networks

Final network

Imputation Statistical analysis Combine M results into
a single final result

Hot-deck Network inference
llgm + StARS

“Pool”
study of frequency

of appearance of edges
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Multiple hot-deck imputation (hd-MI)
Similarity

Test different approaches:

with an affinity score [Cranmer and Gill, 2012]:
R package hot.deck

s(i , j) =
1

q

q∑
k=1

I{|yik−yjk |<σ}

where σ = fixed threshold and
D(i) = {j : s(i , j) = maxl 6=i s(i , l)} choice of sigma

other approaches:
scaled affinity score (unit variance)
k nearest neighbors (k-NN), Euclidean metric
k-NN, Mahalanobis metric
k-NN, CCA approach: most similar neighbor (MSN)
[Crookston and Finley, 2008]
↪→ sparse CCA + k-NN
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Evaluation process, framework

Test on real dataset,
2 projects:

GTEx
DiOGenes

3 imputation
methods:

mean
MIPCA1

our method:
hd-MI

10%, 20%, 30%, 40%
missing individuals

M = 100

reference missing

mean

MIPCA

hd-MI

X0 X̃

X

Y

complete dataset

dataset with
missing rows

auxiliary dataset network inferred from
imputed datasets

(3 methods)

network inference

complete cases

evaluation
comparison with

reference
(Precision/Recall

(PR) curve, NMI for
gene modules)

remove a fraction
f of rows

PR def.

1 MIPCA: Multiple Imputation PCA [Josse et al., 2011]
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Some precision/recall curve
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Application on DiOGenes dataset

Persistence of the links between FADS1, FADS2 et AACS (found linked here
and in previous networks)

CID1,mod.2 CID2,mod.5

New links: enlightened adipose tissue SLC19A2 as novel partner in glucose
homeostasis, besides TWIST1 and MLX1PL

CID1,mod.1 CID2,mod.1 19 / 51
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Conclusion

Importance of the choice of the matrix Y (auxiliary dataset)

For high precision(i.e. less FP) , best recall (i.e. less FN) with
our method hd-MI

beyond 30% of missing individuals: results deteriorate
rightarrow curve PR for hd-MI below missing PR curve

R package: RNAseqNet (CRAN)

Imbert A. et al. (2018), Multiple hot-deck imputation for network inference from RNA
sequencing data. Bioinformatics 34(10):1726–1732.
(https://doi.org/10.1093/bioinformatics/btx819)

Review on missing data

Imbert A. et Vialaneix N. (2018), Décrire, prendre en compte, imputer et évaluer les
valeurs manquantes dans les études statistiques : une revue des approches existantes.,
Journal de la Société Française de Statistique.
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To go further

Network inferred by using only gene expression

other types of available data

to get an overview of the whole system: use different type of
data (e.g. transcriptomics, clinical)

Problem: multiple sources, heterogeneous, large size

need to use integrative methods
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Biological question

Question: What changes in gene expression are associated with a
change in one of the clinical variables of interest?

Datasets

Gene expression −→ QuantSeq

a dozen selected clinical variables

Aim:

Analyze QuantSeq data

infer a network with genes and clinical variables
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QuantSeq
[Moll P. et al, 2014]

+O: more tolerant of poor
RNA quality, faster, less
expensive

-O: no search for isoforms
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An approach based on network inference
For each contrast

24 / 51



PhD: Integration of heterogeneous complex data from unbalanced datasets
Post-Doc: Metabolomics and proteomics data integration for deep phenotyping

References

Imputation multiple hot-deck
Association of clinical and transcriptomic variables

1. Gene selection

3 ”thresholds”:

deletion of poorly expressed
genes (genes with too many
null counts, or missing
logFC): arbitrary threshold:
25%

Differentially expressed
genes: adjusted pvalue
(BH) < 5%

sufficiently regulated
expression: |FC| > 1.3

Nb obs. Nb genes
CID1/CID2 183 541
CID2/CID3 122 661
CID1/CID3 139 470
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2. How estimate links between genes and clinical variables?

Use mixed linear models
Example of model (contrast CID1/CID2)

MatsudaCID2 = MatsudaCID1 + logFCDEG + sex + age + center

One model per selected genes + correction for multiple test
R package: nlme
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3. Final network
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Some biological results

Found 5 modules (loss-calorie diet phase), 3 included at least
one bio-clinical variable

Change in BMI connected with changes in mRNA level of
genes with inflammatory response signature
→ change in BMI negatively associated to changes in
expression of genes encoding secreted protein (GDF15, CCL3
and SPP1)

network analyses identified a novel AT feature with GDF15
upregulated with calorie restriction induced weight loss,
concomitantly to macrophage markers

Imbert A. et al. (2022), Network analyses reveal negative link between changes in
adipose tissue GDF15 and BMI during dietary induced weight loss. Journal of Clinical
Endocrinology & Metabolism (https://doi.org/10.1210/clinem/dgab621)
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Post-Doc: Metabolomics and proteomics data
integration for deep phenotyping
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ProMetIS project

Objective: high-throughput integration of proteomics and
metabolomics data

Case study: molecular phenotyping of mouse models from
the IMPC consortium

2 K-O (LAT and MX2) and one control group (WT)

Partner infrastructures
France Génomique
PHENOMIN (Institut
Clinique de la souris)
ProFI proteomics
Metabohub
Institut Français de
Bioinformatique
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Biological question: characterization of knock-out mice

Imbert A. et al. (2021), ProMetIS: deep phenotyping of mouse models by combined
proteomics and metabolomics analysis. Scientific Data

https://github.com/IFB-ElixirFr/ProMetIS
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LAT

. LAT : linker for activation of T cells involved in

T-cell receptor (TCR) signaling [Loviglio et al., 2017]

Neurodevelopmental diseases [Roncagalli et al, 2010]

[Malissen and Marguet, 2011]
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Material and methods

Metabolomics Proteomics

Liquid Chro-
matography

C18 and Zic-pHILIC Trapping + C18 sepa-
ration

Mass Spec-
trometry

Exactive
(Thermo)/Q-TOF
Impact HD2 (Bruker)

Q-Exactive Plus
(Thermo)/ DDA Top
10 acquisition

Data Process-
ing

XCMS (Work-
flow4Metabolomics)

Mascot database
searching Proline

Annotation/
Identification

KEGG, HMDB,
METLIN, In-house

SwissProt
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Datasets: preclinical, proteomics and metabolomics
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Analysis plan

Intra-omics analysis

Exploratory analysis (PCA)

Differential analysis (linear
model with limma)

Multivariate modeling
(PLS-DA)

Feature selection (biosigner)

Data integration

Mapping and pathway
analysis

Multi-block approach
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Format: 3 tables
ExpressionSet, MultiDataSet

1 dataMatrix.tsv:

names of your samples in the first row
name of your variables in the first
column

2 sampleMetadata.tsv:

names of the factors abour samples
names of yours samples which must
exactly match those of dataMatrix

3 variableMetadata.tsv:

names of the metadata (mz/rt, etc.)
names of variables, which must
exactly match those of dataMatrix
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Workflow
Presentation of the R package phenomis

https://github.com/SciDoPhenIA/phenomis
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PCA, liver, colored by gene

PCA colored by sex

38 / 51



PhD: Integration of heterogeneous complex data from unbalanced datasets
Post-Doc: Metabolomics and proteomics data integration for deep phenotyping

References

Presentation of ProMetIS project
Intra-omics analysis
Multi-omics analysis

Differential analysis, liver

Model: ∼ gene + sex + gene:sex → correction multiple test (FDR 5%)

Proteomics: separate sex and model: ∼ gene → correction multiple test (FDR 5%)
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Number of significant features, liver

Dataset Number of significant features Number of features

Proteomics Significant interaction gene:sex 2098
Female: 258 and Male: 1

Metabo c18+ 1608 5665

Metabo hilic - 826 2866

Annotated metabolites

Met c18 + 41 138

Met hil- 61 199
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Pathway analysis and mapping

Enrichment analysis (using proteomic data)

[Khatri et al., 2012]

Use databases that include both proteins (genes) and
metabolites: KEGG

Mapping proteins and metabolites → enriched pathways
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Enrichment analysis

ORA analysis, Proteomics, KEGG:

R package: clusterProfiler R package: pathview
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Data integration

[Ritchie et al, 2015]

[Picard et al, 2021]:

Early integration: concatenation-based
Mixed integration: transformation-based (Kernel learning, graph)
Intermediate integration: jointly integrating the multi-omics
datasets without needing prior transformation and without relying
on a simple concatenation (rGCCA, joint NMF, iCluster, MOFA,. . . )
Late integration: model-based
Hierarchical integration: inclusion of the prior knowledge of
regulatory relationships between the different layers

. https://github.com/mikelove/awesome-multi-omics
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Multi-block analysis

Source: http://mixomics.org/, presentation
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Unsupervised approach: MOFA
[Argelaguet R et al, 2018, Argelaguet R et al, 2020]
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Unsupervised approach: MOFA
[Argelaguet R et al, 2018, Argelaguet R et al, 2020]
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MOFA, results

warning:

size of the blocks → impact Illustration

no orthogonality constraints: check that the Factors are largely
uncorrelated

R package: MOFA2
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Supervised approach
Regularized Generalized Canonical Correlation Analysis (RGCCA),
[Tenenhaus & Tenenhaus, 2011]

Define links between blocks:

Aim:

block components explain
well their own block

Block components are as
correlated as possible for
connected blocks.
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RGCCA/sGGCA
[Tenenhaus & Tenenhaus, 2011, Tenenhaus et al, 2014]

RGCCA: optimization problem

maxw1,...,wJ

∑J
j ,k (cjkg(cov(Xjwj ,Xkwk ))

s.t. (1− τj )var(Xjwj ) + τj ||wj ||22 = 1, j = 1, . . . , J

cjk =1 if Xj ↔ Xk , 0 otherwhise
g = any convex function
0 ≤ τ ≤ 1 continuum between correlation and covariance

sGGCA: add a L1-penalty, τj = 1

maxw1,...,wJ

∑J
j ,k (cjkg(cov(Xjwj ,Xkwk ))

s.t. ||wj ||2 = 1 and ||wj ||1 ≤ sj , j = 1, . . . , J

where sj is a user defined positive constant that determines the
amount of sparsity for aj
R package: RGCCA and mixOmics (method DIABLO)
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sGCCA results
R package: mixOmics, DIABLO

See results for sgcca with only annotated features
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Thanks for your attention
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Log-linear Poisson graphical model(llgm)
[Allen and Liu, 2012]

Power transformation of the data: xij → xαij , α ∈]0, 1]

Let zj = (xα1j , ..., x
α
nj ) be the transformed vector of expression

values for gene j

p(Zij |zi(−j)) ∼ P(µj ) with log(µj ) =
∑
j ′ 6=j

βjj ′ z̃ij ′

where z̃ corresponds to a standardization of the
log-transformed data

edge between genes j and j ′ ⇔ βjj ′βj ′j 6= 0

sparse model → add a `1 penalty to the log-likelihood with a
regularization parameter λ

choice of λ with a re-sampling procedure: criterion

Back to network inference & RNA-seq
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StARS: Stability Approach to Regularization Selection

Choice λ with StARS:

creation of a vector Λ with decreasing values λ

subsamples of X

infer a network for each subsample and regularization
parameter λ of vector Λ

Choice λopt

λopt = argminλ

{
min0≤ρ≤λ

[∑
j<k 2Ājk (ρ)(1− Ājk (ρ))/

(
p

2

)]
≤ β

}
where
Ājk (λ) = 1

B

∑B
b=1 A

(b)
jk , β = 0.05 by default
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How choose the threshold σ ?
Affinity score: s(i , j) = 1

q

∑q
k=1 I{|yik−yjk |<σ}

Criterion: study of averaged inertia intra-D(i):

Vintra =

∑
i

∑
d: donor of i(xi−xd )2

Di

n

where

n: number of missing individuals

Di : number of donors for individual i .

Back to similarity
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Precision/recall

Back to evaluation process

Precision: Pr = VP/(VP + FP)

number of predicted edges present in the reference network

total number of predicted edges

Recall: R = VP/(VP + FN)

number of predicted edges present in the reference network

number of edges in the reference network

reference networkpredicted network

VP

FP

FN
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Choice of σ, distribution of appearance of edges
DiOGenes, CID1, 20% missing individuals

Choice of σ

Choice: σ = 3

Distribution of appearance of
edges (among the M network)
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Impact of the similarity chosen to create the pool of donors
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PCA, liver,colored by sex

Back to PCA
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ORA

Null hypothesis: Features in pathways are no more differentially
expressed than those outside of pathway

Proba. to observe at least k features of
interest in a pathway by chance:

P(Xk) = 1−
∑k−1

i=0

(
M

i

)(
N −M

n − i

)
(
N

n

)
N: size of background set

n: nb. of metabolites of interest

M: nb. of metabolites in the background set
annotated to the i th pathways

k: nb. of metabolites of interest which are
annotated to the i th pathways

Fisher’s exact test or the test using hypergeometric distribution
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MOFA: size of block effect

Go to MOFA
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Multiple co-inertia analysis

MCIA is a multi-omics exploratory data analysis technique (Meng
et al. 2016). The datasets are projected into the same dimensional
space by defining both ‘global’ and ‘block-specific’ scores (and
loadings), and maximizing the sum squared covariance between
them (Meng et al. 2014).

R package omicade4

Back to MOFA
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Multiple co-inertia analysis
Colored by gene

All metabolites Only annotated metabolites
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Multiple co-inertia analysis
Colored by Sex, all metabolites
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SGCCA
Only annotated metabolites

Back to SGCCA
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