Some examples of data integration

Alyssa Imbert

Biopuces, March 10, 2022

1/51



Table of contents

@ PhD: Integration of heterogeneous complex data from
unbalanced datasets

e Multiple hot-deck imputation
e Association of clinical and transcriptomics variables

= NRA m i Inserm _
== TouLloust e ethodOmics

> qmitt

© Post-Doc: Metabolomics and proteomics data
integration for deep phenotyping

o Presentation of ProMetlS project
e Intra-omics analysis
o Multi-omics analysis

(nYcea)

2/51



PhD: Integration of heterogeneous complex data from unbalanced ¢

Imputation multiple ck

Association of clinical and transcriptomic variables

Section 1

PhD: Integration of heterogeneous complex

data from unbalanced datasets

3/51



PhD: Integration of heterogeneous complex data from unbalanced ¢ . .
€ & P Imputation multiple hot-deck

Association of clinical and transcriptomic variables

Obesity in few words

@ Obesity : defined as abnormal or excessive fat accumulation
that presents a risk to health

e " risk of cardiovascular diseases, type Il diabetes, cancers, ...
e In 2016 (OMS) :

e number of obesity cases x3 since 1975,
o 39% of overweight adults, 13% obese

e BMI (Body Mass Index) : simpler way to assess obesity

Under e Obese Obese Obese
weight ght  (Class 1) | (Class ) |(Class IlI)
[ ] @
. a 4
BMI = weight (kg) £ £
 size2(m?2 L] \(
size“(m?) o)

ARA

<185 29.9 30.0-34.9 [35:0=399 >40.0

(Source figure: https://ib.bioninja.com.au/_Media/bmi-categories_med. jpeg)
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PhD: Integration of heterogeneous complex data from unbalanced ¢

Imputation multiple hot-deck
Association of clinical and transcriptomic variables

DiOGenes

Low-calorie diet Maintenace phase

8 weeks 6 months
Aim : loss at least 8% of

% weight e )
Il (i

Individuals : 938 773 548

bioclinical 632 622 473
RNA

(adipose tissue) 570 445 354

Each time step (CID: Clinical Investigation Day):
o Clinical data

@ Transcriptomic data:

e RT-gPCR
o next-generation sequencing (NGS): RNA-Seq and QuantSeq
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PhD: Integration of heterogeneous complex data from unbalanced ¢

Presentation of datasets

CID1

Imputation multiple hot-deck
Association of clinical and transcriptomic variables

Nb. individuals, RNA-Seq

100 200 300 400 500 600

o

clin. RT-gPCR | RNA-Seq | QuantSeq
Nb var. | > 80 284 54 043 32 041
Nb samples
CiD1 632 495 451 416
CID2 622 544 389 291
CID3 473 371 164 211
CID2
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PhD: Integration of heterogeneous complex data from unbalanced ¢ e e ek

Association of clinical and transcriptomic variables

Visualization of the problem with DiOGenes

Aim: Study the impact of a low-calorie diet on gene regulation

Low-calorie diet

@ 8 weeks @ .@CD3

Infer a network from RNA-
Seq expression data

@ Choice of model for network inference?
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PhD: Integration of heterogeneous complex data from unbalanced ¢ e e ek

Association of clinical and transcriptomic variables

Network inference and RNA-seq data

@ RNA-seq data:

e counts — discrete data;

o over-dispersed data (variance > mean).

@ Network inference method:

e Transform data — approach gaussian distribution
— Gaussian Graphical Model (GGM)

o Use appropriate models based on Poisson distribution
o Log-linear Poisson graphical model (ligm)
[Allen and Liu, 2012];
@ hierarchical log-normal Poisson graphical model
[Gallopin et al., 2013].
@ poisson log-normal model:
[Choi et al., 2017, Chiquet et al., 2019]
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PhD: Integration of heterogeneous complex data from unbalanced ¢ e e ek

Association of clinical and transcriptomic variables

Visualization of the problem with DiOGenes

Aim: Study the impact of a low-calorie diet on gene regulation

Low-calorie diet

@ 8 weeks @ .@cip3

|
Infer a network from RNA-
Seq expression data

@ Choice of model for network inference: log-linear Poisson
graphical model (ligm)

@ Which individuals are used to infer the network?
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PhD: Integration of heterogeneous complex data from unbalanced ¢ e e ek

Association of clinical and transcriptomic variables

Choice of individuals

Low-calorie diet

Two possible approaches

Approach 1: Approach 2 :
By using all available individuals By using common individuals oo
cip1 cinz CIp2
= = 189 common
433 samples individuals
p variables
07 samples

network inference network inference p variables

@® reliable @® comparable

Proposal : increase the quality of network inference by imputing missing individuals
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PhD: Integration of heterogeneous complex data from unbalanced ¢ e e ek

Association of clinical and transcriptomic variables

Problem

Search an imputation method which allows to:

@ preserve the link between variables (genes)
— impute missing individuals entirely = impute
simultaneously all variables

@ Take into account uncertainty which are linked to imputation

Aim: improve the quality of inference by using external
information (important n very small)
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PhD: Integration of heterogeneous complex data from unbalanced ¢ T mle hetd

Association of clinical and transcriptomic variables

Framework and notation

e Matrix X of size n; X p — expression measures of interest
(RNA-seq);

@ matrix Y of size n X ¢ — metabolome, phenotypic data,
gPCR expression,. . .;

e ny samples (individuals) in common between X and Y

@ presence of missing data — experimental reasons

@ missing data supposed to be MAR (Missing At Random).

X Y
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PhD: Integration of heterogeneous complex data from unbalanced ¢

Imputation multiple hot-deck
Association of clinical and transcriptomic variables

Hot-deck imputation

A set of methods based on the concept of donors

Definition

Computation of Imputation
similarities .
1 :H: 7 Creation of by
T | a pool of donors
T
dividual with a T
missing variable I }
select at random
a donor
Incomplete other individuals Imputed
dataset of the same dataset dataset

In our case:

Computation of

Creation of a
E— pool of donors

auziliary data  RNA-seq
ata

RNA-seq  augiliary data augiliary data RNA-seq
data data 13/51



PhD: Integration of heterogeneous complex data from unbalanced ¢

Imputation multiple hot-deck
Association of clinical and transcriptomic variables

Multiple imputation

A way to take into account uncertainty which are linked to imputation

- n
[ =
u - - -
= [] - []
-— = - =
ke
n = n =
= = " =
Incomplete | | | Final result
dataset X | | |
- []
-
M -
M duplicates M imputed Result of statistical analyses
of X datasets, X*™ on each dataset

Imputation Statistical analysis P,‘)Ol: Cqmbine M results
into a single final result

[Rubin D., 1976, Rubin D., 2012]
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PhD: Integration of heterogeneous complex data from unbalanced ¢ e e ek

Association of clinical and transcriptomic variables

Multiple hot-deck imputation

Imputation Statistical analysis Combine M results into
a single final result

Incompltitc Final network

dataset X

M d:;)l}(calcs J ;\t{l sl;bgu)t(ef_m M inferred networks
3 “«Pool”
Hot-deck Network inference tudy of f
Il < SRS of appearance of edges
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PhD: Integration of heterogeneous complex data from unbalanced ¢ e e ek

Association of clinical and transcriptomic variables

Multiple hot-deck imputation (hd-Ml)

Similarity

Test different approaches:
e with an affinity score [Cranmer and Gill, 2012].

R
(i) = - > Lyuyul<o)
k=1

where o = fixed threshold and
D(i) ={j: s(i,j) = max»is(i,/)}
@ other approaches:
o scaled affinity score (unit variance)
o k nearest neighbors (k-NN), Euclidean metric
o k-NN, Mahalanobis metric
o k-NN, CCA approach: most similar neighbor (MSN)
[Crookston and Finley, 2008]
< sparse CCA + k-NN
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PhD: Integration of heterogeneous complex data from unbalanced ¢ e e ek

Association of clinical and transcriptomic variables

Evaluation process, framework

@ Test on real dataset,
2 projects:
o GTEx e et et
. Y
o DiOGenes

(3 methaods)
@ 3 imputation
methods: dtast with

missing rows
complete dataset

e mean ‘ 5
o MIPCA?
e our method: k|
hd-MlI reference missing
o 10%, 20%, 30%, 40%
missing individuals

e M =100

[comptete cases

X

! MIPCA: Multiple Imputation PCA [Josse et al., 2011]

evaluation

comparison with

reference

(Precision/Recall
(PR) curve, NMI for

gene modules)
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PhD: Integration of heterogeneous complex data from unbalanced ¢

Some precision /recall curve

precision

macsion

070 075 0.80 085 0.80 095 1.00

7 Meiwork
missing
mean
MIPCA
| — ha-Mi

precision

T T T
0.0 02 04

recall

(a) DiOGenes - 209

Imputation multiple hot-deck
Association of clinical and transcriptomic variables

Network

3 missing
mean
MIPCA
M

04 06 08 1.0

recall

(b) GTEx - 20%

(¢) DiOCenes - 10%

pracsion

rocal

(d) DiOGenes - 30%

Hatwark

(¢) DiOCenes - 40%
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PhD: Integration of heterogeneous complex data from unbalanced ¢

Imputation multiple hot-deck
Association of clinical and transcriptomic v.

Application on DiOGenes dataset

Persistence of the links between FADSI, FADS2 et AACS (found linked here

and in previous networks)

o, *
@ "?“ ’. ‘g s
sarars @B @ ®
o e s
* o y ®s S
ot @ . SLEI
- & 9
s N\ -
CID1,mod.2 CID2,mod.5
New links: enlightened adipose tissue SLCI9A2 as novel partner in glucose
homeostasis, besides TWIST1 and MLX1PL
FCGRT TMEM135 .
s
AN SL@sC2 oz ANG NDUBALL @ A
nbbod j e,
FrHL r@u TRXI TWEST1 HOXC9 O G ca@o1 .G.
®8  ROBO3 e e SFnit] S ars, oxsii
TN @) P
NDUFA11 s @ - ..?2'.“ @ Limex
TEK2 MI@YPL
TSC22D4 L@®E DABTL PRDM16 K@Fo @2
TI®I1S Aq@cs PPAGBCIB
LDHD & ENO3 Pt
P 1 NPAS3
EUBAT ogier
GHPM\Z NDUFB6
CID1,mod.1 CID2,mod.1 19/51



PhD: Integration of heterogeneous complex data from unbalanced ¢ e e ek

Association of clinical and transcriptomic variables

Conclusion

@ Importance of the choice of the matrix Y (auxiliary dataset)

@ For high precision(i.e. less FP) , best recall (i.e. less FN) with
our method hd-MI

@ beyond 30% of missing individuals: results deteriorate
rightarrow curve PR for hd-MI below missing PR curve

° (CRAN)

Imbert A. et al. (2018), Multiple hot-deck imputation for network inference from RNA
sequencing data. Bioinformatics 34(10):1726-1732.
(https://doi.org/10.1093/bioinformatics/btx819)

@ Review on missing data

Imbert A. et Vialaneix N. (2018), Décrire, prendre en compte, imputer et évaluer les
valeurs manquantes dans les études statistiques : une revue des approches existantes.,
Journal de la Société Francaise de Statistique.
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PhD: Integration of heterogeneous complex data from unbalanced ¢ e e ek

Association of clinical and transcriptomic variables

To go further

@ Network inferred by using only gene expression

other types of available data

to get an overview of the whole system: use different type of
data (e.g. transcriptomics, clinical)

@ Problem: multiple sources, heterogeneous, large size

need to use integrative methods
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PhD: Integration of heterogeneous complex data from unbalanced ¢ .
€ & p Imputation multiple hot-deck

Association of clinical and transcriptomic variables

Biological question

Question: What changes in gene expression are associated with a
change in one of the clinical variables of interest?

Datasets
@ Gene expression — QuantSeq

@ a dozen selected clinical variables
Aim:

@ Analyze QuantSeq data

@ infer a network with genes and clinical variables
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PhD: Integration of heterogeneous complex data from unbalanced ¢

Imputation multiple hot-deck

Association of clinical and transcriptomic variables

QuantSeq

a Library generation ~ @ zomn @) somn
Reverse transcription Poly(A) RNA s
(oligo-dT priming) T
+ Removal of RNA template 5
RNA removal Yo — _—— =
fl 5 s
Random primin
d-strand 5 " \—-:
synthesis
Tagged double-stranded cDNA library ¢
' N
Purification A
[ _ _
b Libary amplfcatin @ @ @ (F): more tolerant of poor
PCR = 1
- RNA quality, faster, less
+ CcDNA library with adapters for llumina sequencing
Purification ‘_ — expenslve
1 .
c NGS sequencing with CSP (or -1 @ (5): no search for isoforms
—_— A —_—
Index read primer Read1 T* Muliplexing read 1
sequencing primer
1
d Data processing
De-multiplexing -

Mapping - Digital counting
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PhD: Integration of heterogeneous complex data from unbalanced ¢

An approach

For each contrast

Imputation multipl

e hot-deck

Association of clinical and transcriptomic variables

based on network inference

Gene

selection

1. Network inference
use logFC
Gaussian Graphical model

2. Relation genes -
clinical variables

mixed model

genej < clin.var. k
edge

genej is significant with
variable k

E—

Compute adjusted P-value for linear mixed

3. Build final network

add the new edges in gene
network

models
Clinical | genes | Adjusted
variables P-value
C, 9 0.008
C 9 08
[ 9 0.2
C 9 043
C, [N 009

Choose a threshold
BH 10%




PhD: Integration of heterogeneous complex data from unbalanced ¢

Imputation multiple hot-deck
Association of clinical and transcriptomic variables

1. Gene selection

3 "thresholds”:

@ deletion of poorly expressed
genes (genes with too many
null counts, or missing
logFC): arbitrary threshold:
25%

@ Differentially expressed
genes: adjusted pvalue
(BH) < 5%

o sufficiently regulated
expression: |FC| > 1.3

Nb obs. | Nb genes
CID1/CID2 183 541
CID2/CID3 122 661
CID1/CID3 139 470
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PhD: Integration of heterogeneous complex data from unbalanced ¢ .
€ & P Imputation multiple hot-deck

Association of clinical and transcriptomic variables

2. How estimate links between genes and clinical variables?

Use mixed linear models
Example of model (contrast CID1/CID2)

Clinical variable
“a previous time step”

Matsudacip;

Gene expression
Fold-change

Clinical variable
Matsudacip,

9eneécp; - gNecpp;

Adjustement

sex, age, center

Matsudacip, = Matsudacipy + logFCpgg + sex + age + center

One model per selected genes + correction for multiple test
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PhD: Integration of heterogeneous complex data from unbalanced ¢ o )
Imputation multiple hot-deck
Association of clinical and transcriptomic variables

3. Final network

HO M

b ool
i o =2

ORI pgr, MA2
P

o W
MBS TCUReNCe  nen 4y = e
" S,

T s

s
FrasFAOS

W I

B e
. o e e mposain
- oz i, e o1
I acia
cro o e
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PhD: Integration of heterogeneous complex data from unbalanced ¢ .
€ & P Imputation multiple hot-deck

Association of clinical and transcriptomic variables

Some biological results

e Found 5 modules (loss-calorie diet phase), 3 included at least
one bio-clinical variable

@ Change in BMI connected with changes in mRNA level of
genes with inflammatory response signature
— change in BMI negatively associated to changes in
expression of genes encoding secreted protein (GDF15, CCL3
and SPPI)

@ network analyses identified a novel AT feature with GDF15
upregulated with calorie restriction induced weight loss,
concomitantly to macrophage markers

Imbert A. et al. (2022), Network analyses reveal negative link between changes in
adipose tissue GDF15 and BMI during dietary induced weight loss. Journal of Clinical
Endocrinology & Metabolism (https://doi.org/10.1210/clinem/dgab621)
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P >roMetlS project
Post-Doc: Metabolomics and proteomics data integration for deep  Intra

Mult

Section 2

Post-Doc: Metabolomics and proteomics data

integration for deep phenotyping
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Presentation of ProMetIS project
Post-Doc: Metabolomics and proteomics data integration for deep  Intra-omics
Multi-omics analysis

ProMetlS project

@ Objective: high-throughput integration of proteomics and
metabolomics data
e Case study: molecular phenotyping of mouse models from
the IMPC consortium
o 2 K-O (LAT and MX2) and one control group (WT)
e Partner infrastructures
e France Génomique g
o PHENOMIN (Institut
Clinique de la souris)
e ProFI| proteomics
o Metabohub
o Institut Francais de
Bioinformatique
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Presentation of ProMetIS project
Post-Doc: Metabolomics and proteomics data integration for deep a-ol s

Biological question: characterization of knock-out mice

= _\

Mouse models Phenotyping
Lat-/- Wt

63 8 8

ol 0 I | el

Biological samples

S s | EE5D

'-‘ Metabolomics

Imbert A. et al. (2021), ProMetIS: deep phenotyping of mouse models by combined
proteomics and metabolomics analysis. Scientific Data J

https://github.com/IFB-ElixirFr/ProMetIS
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Presentation of ProMetIS project
Post-Doc: Metabolomics and proteomics data integration for deep  Intra-omics

LAT

> LAT : linker for activation of T cells involved in
@ T-cell receptor (TCR) signaling [Loviglio et al., 2017]

e Neurodevelopmental diseases [Roncagalli et al, 2010]

a Antigen b

Lat
signalosome

GADS
SLP-76

Subsynapnc
mtracellular veslcle )

[Malissen and /\/Iarguet, 2011]
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Presentation of ProMetIS project
Intra-omics analysis
Multi-omics analysis

Post-Doc: Metabolomics and proteomics data integration for deep

Material and methods

| Metabolomics | Proteomics
®p ProFI
Liquid  Chro- | C18 and Zic-pHILIC Trapping + C18 sepa-
matography ration
Mass Spec- | Exactive Q-Exactive Plus
trometry (Thermo)/Q-TOF (Thermo)/ DDA Top
Impact HD2 (Bruker) | 10 acquisition
Data Process- | XCMS (Work- | Mascot database
ing flow4Metabolomics) searching Proline
Annotation/ KEGG, HMDB, | SwissProt
Identification METLIN, In-house
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Post-Doc: Metabolomics and proteomics data integration for deep

Presentation of ProMetIS project
Intra-omic

s

Multi-omics analysis

Datasets: preclinical, pr

NAs < 20% for at least 1 group
Variance >0

[oonis I =3

log2 transformation

NA < 20% for at least 1 group
Variance >0
]
Filtering
contaminants
L}
Imputation

teomics and metabolomics

phenomis ()

Blank filtering
Pool dilution
Signal drift correction

NA < 20% for at least 1 group
Variance > 0

Pool CV<0.3
Pool €V / sample CV < 1
Chemical redundancy

log2 transformation

T
[ﬁ preclinical

liver_proteomics 2,187

liver_metabo_c18hypersil_pos
liver_metabo_hilic_neg

5,665 [138]
2,866 [199]

plasma_proteomics m

plasma_metabo_c18hypersil_pos
plasma_metabo_hilic_neg

plasma_metabo_c18acquity_pos
plasma_metabo_c18acquity_neg

4,788 [113]
3,131 [191]
6,104 [78]
1,584 [49]
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Presentation of ProMetlS project
Post-Doc: Metabolomics and proteomics data integration for deep  Intra-omics analysis

Multi-omics analysis

Analysis plan

Gehotype r 2
LAT vs|WT
Liver

Intra-omics analysis Data integration

e Exploratory analysis (PCA)

n=28

o Differential analysis (linear @ Mapping and pathway
model with limma) analysis

e Multivariate modeling
(PLS-DA) @ Multi-block approach

o Feature selection (biosigner) )

o’
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Presentation of ProMetIS project
Intra-omics analysis
Multi-omics analysis

Post-Doc: Metabolomics and proteomics data integration for deep

Format: 3 tables

ExpressionSet, MultiDataSet

@ dataMatrix.tsv:

e names of your samples in the first rowW [} s s wss moam s
@ name of your variables in the first 3 |MoSTe1 | 795421969 400570,6324 831219.0107 671471606

4 |M135TS4 | 7057880716 11926973.53 9514452.963 6990900.537

- e & 5o: oo @
@ sampleMetadata.tsv: EE ErE
e names of the factors abour samples
e names of yours samples which must
exactly match those of dataMatrix — [Tasewcin o oopet oo oo
© variableMetadata.tsv: - e

o names of the metadata (mz/rt, etc.)
e names of variables, which must
exactly match those of dataMatrix
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Presentation of ProMetlS projec

Post-Doc: Metabolomics and proteomics data integration for deep  Intra-omics analysis

Vlulti-omics analys
Workflow

Presentation of the R package phenomis

c18 c18 c18
eSet <- phenomis:ireading(dirC BOWON | . | HIUCTRERSON g HUCTT oy
Qualty control 100
Signal drift and batch § pess phenomis::correcting(eSet)
effect correction
eSet <- phenomis: transforming(eSet,
methodC="10g2")
Univariate eSet <- phenomis::hypotesting(eSet, testC="limma
hypothesis testing = ‘gene’, adjust="BH')
SetPCA <- ropls::opls(eSet) L s = = =
eSet < ropls-getEcet(setPCA) & RS

Post-processing

Heatmap eSet <- phenomis::clustering(eSet,
clusterVi=c(2,2) Lo |
(O)PLS(-DA) SetPlsda <- ropls::opls(eSet, ‘gene'’ =2
eSet <- ropls::getEset(SetPlsda)
Feature selection

8
i
8

biodb

s

setBiosign <- biosigner::biosign(eSet, ‘gene, seed|=213)

eSet <- biosigner::getEset(SetBiosign) 1
s
] PRl [ et < phenomis:iannotating(eSet, ]
e atabase=c(‘chebi',local.ms’)
=
<

https://github.com/SciDoPhenIA/phenomis
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Presentation of ProMetIS project
Post-Doc: Metabolomics and proteomics data integration for deep  Intra-omics analysis
Multi-omics analysis

PCA, liver, colored by gene

Scores (PCR) Scores (PCA)
precinical) [proteomics_iver]

aum

i

o5 e

Scores (PCA)
{metabolomic. ivr_hilc_neg)

2w

§
8
o o P @ . o o » e o«
Rax Rax
ose o ass wam
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Post-Doc: Metabolomics and proteomics data integration for deep

Presentation of ProMetIS project
Intra-omics analysis
Multi-omics analysis

Differential analysis, liver

Model: ~ gene + sex + gene:sex — correction multiple test (FDR 5%)

preclinical

15

metabolomics_liver_hilic_neg metabolomics _liver_c18hypersil_pos

-log10(8H)

00 WT

Proteomics: separate

proteol
limma

Hog10(8H)

o oo

Fold Change

Fold Change

-log10(8H)
-log10(8H)

LAT

Fold Change

o E
Fold Change

sex and model: ~ gene — correction multiple test (FDR 5%)

proteomics_liver, F

limma ‘gene’, BH (signif.: 258)

-Hog10(8H)

r wr

Fold Change
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Presentation of ProMetIS project
Post-Doc: Metabolomics and proteomics data integration for deep  Intra-omics analysis

Multi-omics analysis

Number of significant features, liver

Dataset Number of significant features | Number of features

Proteomics | Significant interaction gene:sex 2098
Female: 258 and Male: 1
Metabo c18+ 1608 5665
Metabo hilic - 826 2866
Annotated metabolites

Met c18 + 41 138
Met hil- 61 199
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Post-Doc: Metabolomics and proteomics data integration for deep  In mi s

Multi-omics analysis

Pathway analysis and mapping

@ Enrichment analysis (using proteomic data)

1. Over-representation Analysis (ORA)

Input // 9

dataset // \| Assess

/ Pathway
2. Functional Class Scoring (FCS) significance

Pathway Gene-level Gene-set
database statistics YAl (Pathway) statistics

3. Pathway topology (PT)

DE or Gene-level statistics Pathway

Impact

2| Pathway. Factor
5 topology

[Khatri et al., 2012]

@ Use databases that include both proteins (genes) and
metabolites: KEGG

@ Mapping proteins and metabolites — enriched pathways
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B tation of Pr
Post-Doc: Metabolomics and proteomics data integration for deep  Intra cs analysis
Multi-omics analysis

Enrichment analysis

ORA analysis, Proteomics, KEGG:

| | -
210 041 2922

R package: clusterProfiler R package: pathview
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Presentation of

Post-Doc: Metabolomics and proteomics data integration for deep  Intra-omics analysis

Multi-omics analysis

Data integration

o - a - o -

Ao e L
\DL/ a ' ﬁq os’f‘f ~7o°i‘i "_ojy

J 00 . OO
° ®o/ a IR

[Ritchie et al, 2015] : : :
[Picard et al, 2021]:

Early integration: concatenation-based

Mixed integration: transformation-based (Kernel learning, graph)
Intermediate integration: jointly integrating the multi-omics
datasets without needing prior transformation and without relying
on a simple concatenation (rGCCA, joint NMF, iCluster, MOFA,...)
Late integration: model-based

Hierarchical integration: inclusion of the prior knowledge of
regulatory relationships between the different layers

> https://github.com/mikelove/awesome-multi-omics
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Post-Doc: Metabolomics and proteomics data integration for deep

Multi-block analysis

i1 1 B

Univariate/bivariate
Correlation, statistic test (t test, ANOVA, etc.) I I I. |
) ;

~ Qualitative

- Quantitative

n samples

« Unsupervised multivariate analysis
PCA

« Supervised multivariate analysis
PLS, PLS-DA |®
Integration with 2 datasets (quantitative

variables)

PLS, CCA, rCCA, sPLS
Multi-block approach

rGCCA, sSGCCA -- l o
MOFA, MCIA

Source: http://mixomics.org/, presentation
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Presentation of ProMetlS project

Intra-omics analysis
Multi-omics analysis

Post-Doc: Metabolomics and proteomics data integration for deep

Unsupervised approach: MOFA

MOFA model

Features, Factors,
P — —

Features
o i

Samples
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Presentation of ProMetIS proj
Intra-omics analysis
Multi-omics analysis

Post-Doc: Metabolomics and proteomics data integration for deep

Unsupervised approach: MOFA

A B
Samples Factors Variance decomposition by factor
="
@ o |
t = ¥
2 | FEE
& 3
2 = ] Iczs
"EVY = 015
‘ I . . 7 ‘ -
‘ 2
~ 4 7
> £ Factor
2 .
03 Sampl Annotation of factors
T amples - .
\/ » p Inspection of loadings Feature set enrichment analysis
Assay2 £ 2 s ——
> /\ 2 14 Gene expression
Sz ks P Cell cycle
.o 5 Ribosome assembly
A g Io Splicing regulation —
%, H MRNA degradation ———
& - 1 05
oo actors p-value
2 F I
=ESSSE-| Imputation of missing values Inspection of factors
L L
5
2
8
&
a Factor 1°
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MetlS project

Post-Doc: Metabolomics and proteomics data integration for deep  Intr

MOFA, results

Multi-omics analysis

warning:
@ size of the blocks — impact

@ no orthogonality constraints: check that the Factors are largely
uncorrelated

R package: MOFA2
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Post-Doc: Metabolomics and proteomics data integration for deep  Intra cs analysis
Multi-omics analysis

Supervised approach
Regularized Generalized Canonical Correlation Analysis (RGCCA),

Define links between blocks:

. P Aim:
@ block components explain

Cup-o - .
G well their own block

MP=
. Vo ——— ¥« —— % @ Block components are as
correlated as possible for

connected blocks.
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Presentation of ProMetIS project
Post-Doc: Metabolomics and proteomics data integration for deep  Intra-omics analysis
Multi-omics analysis

RGCCA /sGGCA

RGCCA: optimization problem

MaXwy,...,w, f,k(cjkg(COV()QWj,Xka))
st. (1 —1)var(Xjwj) + 7j|lwjll3 =1,/ =1,...,J

o cix =1if X; <> X, 0 otherwhise
@ g = any convex function
@ 0 <7 <1 continuum between correlation and covariance

sGGCA: add a Ll-penalty, 7; =1

maxan,....w; 27 (kg (cov(Xjwj, Xiwi))
st [willz=T1and [[wjl <s;,j=1,...,J

where s; is a user defined positive constant that determines the
amount of sparsity for a;
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sGCCA results

Multi-omics analysis

R package: mixOmics, DIABLO

¥ (genotype)

mu
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Presentation of ProMetlS project
Post-Doc: Metabolomics and proteomics data integration for deep  Intra-omics analysis

Multi-omics analysis

Thanks for your attention
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Log-linear Poisson graphical model(llgm)

@ Power transformation of the data: xj — X7, « €]0, 1]

o Let zj = (x}, ..., x;) be the transformed vector of expression
values for gene j

P(Zjlzi(—j)) ~ P(uj) with log(rj) = > By
J'#i

where Z corresponds to a standardization of the
log-transformed data

@ edge between genes j and & B Bjrj # 0

@ sparse model — add a ¢; penalty to the log-likelihood with a
regularization parameter A

@ choice of A with a re-sampling procedure: criterion
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StARS: Stability Approach to Regularization Selection

Choice A with StARS:
@ creation of a vector A with decreasing values A
@ subsamples of X

@ infer a network for each subsample and regularization
parameter A of vector A

Choice Agpt

epe = argminy { mimo<, < | 2Anl)0 - o)/ (5) ] < 5}

where

Ai(N) = 335 AL, B = 0.05 by default
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How choose the threshold o ?
Affinity score: s(7,j) = 1 321 Ty, <o)

Criterion: study of averaged inertia intra-D(/):

2
z i Zd: donor of i(Xf_Xd)
1 D,’

Vintra = n

where

@ n: number of missing individuals

@ D;: number of donors for individual /.
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Precision /recall

e Precision: Pr = VP/(VP + FP)

number of predicted edges present in the reference network

total number of predicted edges
@ Recall: R = VP/(VP + FN)

number of predicted edges present in the reference network

number of edges in the reference network

VP

FN
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Choice of o, distribution of appearance of edges
DiOGenes, CID1, 20% missing individuals

Choice of o Distribution of appearance of
edges (among the M network)
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R / @
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Number of times that
ChOICGI o= 3 the edge is inferred
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Impact of the similarity chosen to create the pool of donors

< ]
—
o | t.
o ‘i
= <2
o o
o
3
e o~
o
o _| Network
o = — k-NN (Euclidean)
k-NN (Mahalanobis)
k-NN (CCA)
w0 = affinity score (raw)
O- = = = affinity score (scaled)
! T ! ! T !
0.0 0.2 0.4 0.6 0.8 1.0
Recall
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PCA, liver,colored by sex
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Null hypothesis: Features in pathways are no more differentially
expressed than those outside of pathway

Proba. to observe at least k features of
interest in a pathway by chance:

M\ (N — M
P(XK) =1— k) <’>é/,\7/”>') N

N: size of background set

n: nb. of metabolites of interest

M: nb. of metabolites in the background set
annotated to the i" pathways

@ k: nb. of metabolites of interest which are
annotated to the ith pathways

Fisher's exact test or the test using hypergeometric distribution
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MOFA: size of block effect
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Multiple co-inertia analysis

MCIA is a multi-omics exploratory data analysis technique (Meng
et al. 2016). The datasets are projected into the same dimensional
space by defining both ‘global’ and ‘block-specific’ scores (and
loadings), and maximizing the sum squared covariance between

them (Meng et al. 2014).
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Multiple co-inertia analysis
Colored by gene

All metabolites Only annotated metabolites
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Multiple co-inertia analysis

Colored by Sex, all metabolites
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SGCCA

Only annotated metabolites
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